These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35701587)

  • 1. Rule extraction from biased random forest and fuzzy support vector machine for early diagnosis of diabetes.
    Hao J; Luo S; Pan L
    Sci Rep; 2022 Jun; 12(1):9858. PubMed ID: 35701587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Reinforcement Learning-based Evolutionary Fuzzy Rule-Based System for diabetes diagnosis.
    Mansourypoor F; Asadi S
    Comput Biol Med; 2017 Dec; 91():337-352. PubMed ID: 29121541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical Decision Support System for Diabetic Patients by Predicting Type 2 Diabetes Using Machine Learning Algorithms.
    Islam R; Sultana A; Tuhin MN; Saikat MSH; Islam MR
    J Healthc Eng; 2023; 2023():6992441. PubMed ID: 37287539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features.
    Qi H; Song X; Liu S; Zhang Y; Wong KKL
    Comput Methods Programs Biomed; 2023 Apr; 231():107378. PubMed ID: 36731312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RFFE - Random Forest Fuzzy Entropy for the classification of Diabetes Mellitus.
    Usha Ruby A; George Chellin Chandran J; Swasthika Jain TJ; Chaithanya BN; Patil R
    AIMS Public Health; 2023; 10(2):422-442. PubMed ID: 37304588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes.
    Han L; Luo S; Yu J; Pan L; Chen S
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):728-34. PubMed ID: 24860043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
    Hajiloo M; Rabiee HR; Anooshahpour M
    BMC Bioinformatics; 2013; 14 Suppl 13(Suppl 13):S4. PubMed ID: 24266942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.
    Olisah CC; Smith L; Smith M
    Comput Methods Programs Biomed; 2022 Jun; 220():106773. PubMed ID: 35429810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early Diabetes Prediction: A Comparative Study Using Machine Learning Techniques.
    Poly TN; Islam MM; Li YJ
    Stud Health Technol Inform; 2022 Jun; 295():409-413. PubMed ID: 35773898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of machine learning algorithms to create diabetic patient re-admission profiles.
    Alloghani M; Aljaaf A; Hussain A; Baker T; Mustafina J; Al-Jumeily D; Khalaf M
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 9):253. PubMed ID: 31830980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A diabetes prediction model based on Boruta feature selection and ensemble learning.
    Zhou H; Xin Y; Li S
    BMC Bioinformatics; 2023 Jun; 24(1):224. PubMed ID: 37264332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating fuzzy rules for constructing interpretable classifier of diabetes disease.
    Settouti N; Chikh MA; Saidi M
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):257-70. PubMed ID: 22895813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetes Detection Models in Mexican Patients by Combining Machine Learning Algorithms and Feature Selection Techniques for Clinical and Paraclinical Attributes: A Comparative Evaluation.
    García-Domínguez A; Galván-Tejada CE; Magallanes-Quintanar R; Gamboa-Rosales H; Curiel IG; Peralta-Romero J; Cruz M
    J Diabetes Res; 2023; 2023():9713905. PubMed ID: 37404324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying diseases symptoms and general rules using supervised and unsupervised machine learning.
    Sogandi F
    Sci Rep; 2024 Aug; 14(1):17956. PubMed ID: 39095606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Approach for Feature Selection and Classification of Diabetes Mellitus: Machine Learning Methods.
    Saxena R; Sharma SK; Gupta M; Sampada GC
    Comput Intell Neurosci; 2022; 2022():3820360. PubMed ID: 35463255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Study of Fuzzy Rule-Based Classifiers for Medical Applications.
    Czmil A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM.
    Gollapalli M; Alansari A; Alkhorasani H; Alsubaii M; Sakloua R; Alzahrani R; Al-Hariri M; Alfares M; AlKhafaji D; Al Argan R; Albaker W
    Comput Biol Med; 2022 Aug; 147():105757. PubMed ID: 35777087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fuzzy Rule-Based System for Classification of Diabetes.
    Aamir KM; Sarfraz L; Ramzan M; Bilal M; Shafi J; Attique M
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-based modeling to predict inhibitors of acetylcholinesterase.
    Sandhu H; Kumar RN; Garg P
    Mol Divers; 2022 Feb; 26(1):331-340. PubMed ID: 33891263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.