These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 3570164)
21. Effects of cholestanol feeding and cholestyramine treatment on the tissue sterols in the rabbit. Buchmann MS; Clausen OP Lipids; 1986 Dec; 21(12):738-43. PubMed ID: 3821387 [TBL] [Abstract][Full Text] [Related]
22. Effect of simvastatin (MK-733) on sterol and bile acid excretion in rabbits. Ishida F; Iizuka Y; Kakubari K; Kurahashi Y; Sawasaki Y; Kamei T Jpn J Pharmacol; 1990 May; 53(1):35-45. PubMed ID: 2352377 [TBL] [Abstract][Full Text] [Related]
23. Cholesterol synthesis and degradation in normal rats fed a cholesterol-free diet with excess cystine. Aoyama Y; Amano N; Yoshida A Lipids; 1999 Jun; 34(6):583-9. PubMed ID: 10405972 [TBL] [Abstract][Full Text] [Related]
24. Effect of chenodeoxycholic acid and phenobarbital on the rate-limiting enzymes of hepatic cholesterol and bile acid synthesis in patients with gallstones. Coyne MJ; Bonorris GG; Goldstein LI; Schoenfield LJ J Lab Clin Med; 1976 Feb; 87(2):281-91. PubMed ID: 1245792 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous determination of plasma mevalonate and 7alpha-hydroxy-4-cholesten-3-one levels in hyperlipoproteinemia: convenient indices for estimating hepatic defects of cholesterol and bile acid syntheses and biliary cholesterol supersaturation. Shoda J; Miyamoto J; Kano M; Ikegami T; Matsuzaki Y; Tanaka N; Osuga T; Miyazaki H Hepatology; 1997 Jan; 25(1):18-26. PubMed ID: 8985259 [TBL] [Abstract][Full Text] [Related]
27. Biliary lipid secretion, bile acid metabolism, and gallstone formation are not impaired in hepatic lipase-deficient mice. Amigo L; Mardones P; Ferrada C; Zanlungo S; Nervi F; Miquel JF; Rigotti A Hepatology; 2003 Sep; 38(3):726-34. PubMed ID: 12939599 [TBL] [Abstract][Full Text] [Related]
28. Bile acid sulfonates alter cholesterol gallstone incidence in hamsters. Cohen BI; Miki S; Mosbach EH; Ayyad N; Stenger RJ; Mikami T; Yoshii M; Kihira K; Hoshita T Hepatology; 1993 Jan; 17(1):103-10. PubMed ID: 8423031 [TBL] [Abstract][Full Text] [Related]
29. Effect of high plant sterol-enriched diet and cholesterol absorption inhibitor, SCH 58235, on plant sterol absorption and plasma concentrations in hypercholesterolemic wild-type Kyoto rats. Batta AK; Xu G; Bollineni JS; Shefer S; Salen G Metabolism; 2005 Jan; 54(1):38-48. PubMed ID: 15562378 [TBL] [Abstract][Full Text] [Related]
30. Biosynthesis of cholestanol from bile acid intermediates in the rabbit and the rat. Skrede S; Björkhem I; Buchmann MS; Midtvedt T J Biol Chem; 1985 Jan; 260(1):77-81. PubMed ID: 3917436 [TBL] [Abstract][Full Text] [Related]
31. [Gas-chromatographic analysis of hypercholestanol in the bile and its role in the pathogenesis of cholelithiasis]. Krikshtopaĭtis MI; Chupin SP; Tiuriumin IaL; Nikiforov SB; Fedorova LS; Salenko VL; Vialkov AI Sov Med; 1989; (9):19-24. PubMed ID: 2603035 [TBL] [Abstract][Full Text] [Related]
32. Effect of different varieties of pectin and guar gum on plasma, hepatic and biliary lipids and cholesterol gallstone formation in hamsters fed on high-cholesterol diets. Trautwein EA; Kunath-Rau A; Erbersdobler HF Br J Nutr; 1998 May; 79(5):463-71. PubMed ID: 9682666 [TBL] [Abstract][Full Text] [Related]
34. Sterol balance studies in the rat. Effects of dietary cholesterol and beta-sitosterol on sterol balance and rate-limiting enzymes of sterol metabolism. Raicht RF; Cohen BI; Shefer S; Mosbach EH Biochim Biophys Acta; 1975 Jun; 388(3):374-84. PubMed ID: 1137717 [TBL] [Abstract][Full Text] [Related]
35. Effect of the type of dietary fat on biliary lipid composition and bile lithogenicity in humans with cholesterol gallstone disease. Yago MD; González V; Serrano P; Calpena R; Martínez MA; Martínez-Victoria E; Mañas M Nutrition; 2005 Mar; 21(3):339-47. PubMed ID: 15797676 [TBL] [Abstract][Full Text] [Related]
36. CS-514, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase: tissue-selective inhibition of sterol synthesis and hypolipidemic effect on various animal species. Tsujita Y; Kuroda M; Shimada Y; Tanzawa K; Arai M; Kaneko I; Tanaka M; Masuda H; Tarumi C; Watanabe Y Biochim Biophys Acta; 1986 Jun; 877(1):50-60. PubMed ID: 3636158 [TBL] [Abstract][Full Text] [Related]
37. Studies on the cholesterol-free mouse: strong activation of LXR-regulated hepatic genes when replacing cholesterol with desmosterol. Heverin M; Meaney S; Brafman A; Shafir M; Olin M; Shafaati M; von Bahr S; Larsson L; Lövgren-Sandblom A; Diczfalusy U; Parini P; Feinstein E; Björkhem I Arterioscler Thromb Vasc Biol; 2007 Oct; 27(10):2191-7. PubMed ID: 17761942 [TBL] [Abstract][Full Text] [Related]
38. Increases in biliary cholesterol-to-bile acid ratio in pregnant hamsters fed low and high levels of cholesterol. Yao L; Dawson PA; Woollett LA Am J Physiol Gastrointest Liver Physiol; 2003 Feb; 284(2):G263-8. PubMed ID: 12529268 [TBL] [Abstract][Full Text] [Related]
39. Increasing hepatic cholesterol 7alpha-hydroxylase reduces plasma cholesterol concentrations in normocholesterolemic and hypercholesterolemic rabbits. Xu G; Salen G; Shefer S; Ness GC; Nguyen LB; Tint GS; Parker TS; Roberts J; Batta AK; Chen TS; Zhao Z; Kong X Hepatology; 1996 Oct; 24(4):882-7. PubMed ID: 8855192 [TBL] [Abstract][Full Text] [Related]
40. Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. Fuchs M; Hafer A; Münch C; Kannenberg F; Teichmann S; Scheibner J; Stange EF; Seedorf U J Biol Chem; 2001 Dec; 276(51):48058-65. PubMed ID: 11673458 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]