BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35701874)

  • 1. Mitochondrial H
    Li Z; Xia H; Sharp TE; LaPenna KB; Elrod JW; Casin KM; Liu K; Calvert JW; Chau VQ; Salloum FN; Xu S; Xian M; Nagahara N; Goodchild TT; Lefer DJ
    Circ Res; 2022 Jul; 131(3):222-235. PubMed ID: 35701874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure.
    Uddin GM; Zhang L; Shah S; Fukushima A; Wagg CS; Gopal K; Al Batran R; Pherwani S; Ho KL; Boisvenue J; Karwi QG; Altamimi T; Wishart DS; Dyck JRB; Ussher JR; Oudit GY; Lopaschuk GD
    Cardiovasc Diabetol; 2019 Jul; 18(1):86. PubMed ID: 31277657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis.
    Polhemus D; Kondo K; Bhushan S; Bir SC; Kevil CG; Murohara T; Lefer DJ; Calvert JW
    Circ Heart Fail; 2013 Sep; 6(5):1077-86. PubMed ID: 23811964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-Mercaptopyruvate sulfurtransferase/hydrogen sulfide protects cerebral endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury via mitoprotection and inhibition of the RhoA/ROCK pathway.
    Zhang F; Chen S; Wen JY; Chen ZW
    Am J Physiol Cell Physiol; 2020 Oct; 319(4):C720-C733. PubMed ID: 32813542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.
    Wang W; Zhang F; Xia Y; Zhao S; Yan W; Wang H; Lee Y; Li C; Zhang L; Lian K; Gao E; Cheng H; Tao L
    Am J Physiol Heart Circ Physiol; 2016 Nov; 311(5):H1160-H1169. PubMed ID: 27542406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase.
    Peleli M; Bibli SI; Li Z; Chatzianastasiou A; Varela A; Katsouda A; Zukunft S; Bucci M; Vellecco V; Davos CH; Nagahara N; Cirino G; Fleming I; Lefer DJ; Papapetropoulos A
    Biochem Pharmacol; 2020 Jun; 176():113833. PubMed ID: 32027885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic Effect of Targeting Branched-Chain Amino Acid Catabolic Flux in Pressure-Overload Induced Heart Failure.
    Chen M; Gao C; Yu J; Ren S; Wang M; Wynn RM; Chuang DT; Wang Y; Sun H
    J Am Heart Assoc; 2019 Jun; 8(11):e011625. PubMed ID: 31433721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor γ coactivator levels and mitochondrial dysfunction.
    Faerber G; Barreto-Perreia F; Schoepe M; Gilsbach R; Schrepper A; Schwarzer M; Mohr FW; Hein L; Doenst T
    J Thorac Cardiovasc Surg; 2011 Feb; 141(2):492-500, 500.e1. PubMed ID: 20447656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H₂S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase.
    Kondo K; Bhushan S; King AL; Prabhu SD; Hamid T; Koenig S; Murohara T; Predmore BL; Gojon G; Gojon G; Wang R; Karusula N; Nicholson CK; Calvert JW; Lefer DJ
    Circulation; 2013 Mar; 127(10):1116-27. PubMed ID: 23393010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK.
    Shimizu Y; Polavarapu R; Eskla KL; Nicholson CK; Koczor CA; Wang R; Lewis W; Shiva S; Lefer DJ; Calvert JW
    J Mol Cell Cardiol; 2018 Mar; 116():29-40. PubMed ID: 29408195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen Sulfide Modulates Endothelial-Mesenchymal Transition in Heart Failure.
    Li Z; Xia H; Sharp TE; LaPenna KB; Katsouda A; Elrod JW; Pfeilschifter J; Beck KF; Xu S; Xian M; Goodchild TT; Papapetropoulos A; Lefer DJ
    Circ Res; 2023 Jan; 132(2):154-166. PubMed ID: 36575984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise Enhances Branched-Chain Amino Acid Catabolism and Decreases Cardiac Vulnerability to Myocardial Ischemic Injury.
    Wu G; Guo Y; Li M; Li C; Tan Y; Li Y; Li J; Wang L; Zhang X; Gao F
    Cells; 2022 May; 11(10):. PubMed ID: 35626742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity.
    Mitidieri E; Tramontano T; Gurgone D; Citi V; Calderone V; Brancaleone V; Katsouda A; Nagahara N; Papapetropoulos A; Cirino G; d'Emmanuele di Villa Bianca R; Sorrentino R
    Nitric Oxide; 2018 May; 75():53-59. PubMed ID: 29452248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrite Therapy Ameliorates Myocardial Dysfunction via H2S and Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2)-Dependent Signaling in Chronic Heart Failure.
    Donnarumma E; Bhushan S; Bradley JM; Otsuka H; Donnelly EL; Lefer DJ; Islam KN
    J Am Heart Assoc; 2016 Jul; 5(8):. PubMed ID: 27473036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy.
    Riehle C; Wende AR; Zaha VG; Pires KM; Wayment B; Olsen C; Bugger H; Buchanan J; Wang X; Moreira AB; Doenst T; Medina-Gomez G; Litwin SE; Lelliott CJ; Vidal-Puig A; Abel ED
    Circ Res; 2011 Sep; 109(7):783-93. PubMed ID: 21799152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium Sulfide Attenuates Ischemic-Induced Heart Failure by Enhancing Proteasomal Function in an Nrf2-Dependent Manner.
    Shimizu Y; Nicholson CK; Lambert JP; Barr LA; Kuek N; Herszenhaut D; Tan L; Murohara T; Hansen JM; Husain A; Naqvi N; Calvert JW
    Circ Heart Fail; 2016 Apr; 9(4):e002368. PubMed ID: 27056879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant.
    Yamada S; Kane GC; Behfar A; Liu XK; Dyer RB; Faustino RS; Miki T; Seino S; Terzic A
    J Physiol; 2006 Dec; 577(Pt 3):1053-65. PubMed ID: 17038430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H
    Nasi S; Ehirchiou D; Chatzianastasiou A; Nagahara N; Papapetropoulos A; Bertrand J; Cirino G; So A; Busso N
    Arthritis Res Ther; 2020 Mar; 22(1):49. PubMed ID: 32183900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H
    Augsburger F; Szabo C
    Pharmacol Res; 2020 Apr; 154():104083. PubMed ID: 30500457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by DL-α-Lipoic Acid.
    Coletta C; Módis K; Szczesny B; Brunyánszki A; Oláh G; Rios EC; Yanagi K; Ahmad A; Papapetropoulos A; Szabo C
    Mol Med; 2015 Feb; 21(1):1-14. PubMed ID: 25715337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.