These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35702441)

  • 1. One-pot synthesis of 2-bromopropionyl esterified cellulose nanofibrils as hydrophobic coating and film.
    Guo M; Hsieh YL
    RSC Adv; 2022 May; 12(24):15070-15082. PubMed ID: 35702441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-Bromopropionyl Esterified Cellulose Nanofibrils as Chain Extenders or Polyols in Stoichiometrically Optimized Syntheses of High-Strength Polyurethanes.
    Guo M; Hsieh YL
    Biomacromolecules; 2022 Nov; 23(11):4574-4585. PubMed ID: 36200931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable poly(lauryl methacrylate) surface grafting
    Guo M; Hsieh YL
    RSC Adv; 2023 Aug; 13(37):26089-26101. PubMed ID: 37664202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane.
    Kim GH; Kang DH; Jung BN; Shim JK
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Anti-Bacterial Cellulose Nanofibrils (CNFs) from Bamboo Pulp in a Reactable Citric Acid-Choline Chloride Deep Eutectic Solvent.
    Zhu Y; Zhang J; Wang D; Shi Z; Yang J; Yang H
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Esterified cellulose nanofibres from saw dust using vegetable oil.
    Mokhena TC; John MJ
    Int J Biol Macromol; 2020 Apr; 148():1109-1117. PubMed ID: 32004608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfated Cellulose Nanofibrils from Chlorosulfonic Acid Treatment and Their Wet Spinning into High-Strength Fibers.
    Pingrey B; Hsieh YL
    Biomacromolecules; 2022 Mar; 23(3):1269-1277. PubMed ID: 35148066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid.
    Tang L; Huang B; Lu Q; Wang S; Ou W; Lin W; Chen X
    Bioresour Technol; 2013 Jan; 127():100-5. PubMed ID: 23131628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles.
    Jiang X; Mietner JB; Harder C; Komban R; Chen S; Strelow C; Sazama U; Fröba M; Gimmler C; Müller-Buschbaum P; Roth SV; Navarro JRG
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5687-5700. PubMed ID: 36669131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pickering Emulsions and Hydrophobized Films of Amphiphilic Cellulose Nanofibers Synthesized in Deep Eutectic Solvent.
    Qasim U; Suopajärvi T; Sirviö JA; Backman O; Xu C; Liimatainen H
    Biomacromolecules; 2023 Sep; 24(9):4113-4122. PubMed ID: 37611236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman scattering.
    Jiang F; Hsieh YL
    Biomacromolecules; 2014 Oct; 15(10):3608-16. PubMed ID: 25189757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of versatile thiol-norbornene modifications to cellulose nanofibers on rheology and film properties.
    Fein K; Bousfield DW; Gramlich WM
    Carbohydr Polym; 2020 Feb; 230():115672. PubMed ID: 31887920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-thin parylene-aluminium hybrid coatings on nanocellulose films to resist water sensitivity.
    Sethi J; Glowacki E; Reid MS; Larsson PA; Wågberg L
    Carbohydr Polym; 2024 Jan; 323():121365. PubMed ID: 37940265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sprayable cellulose nanofibrils stabilized phase change material Pickering emulsion for spray coating application.
    Zheng Y; Oguzlu H; Baldelli A; Zhu Y; Song M; Pratap-Singh A; Jiang F
    Carbohydr Polym; 2022 Sep; 291():119583. PubMed ID: 35698400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State.
    Yang X; Reid MS; Olsén P; Berglund LA
    ACS Nano; 2020 Jan; 14(1):724-735. PubMed ID: 31886646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative modification by grafting in bamboo cellulose nanofibrils: A potential option to improve compatibility and tunable surface energy in bionanocomposites.
    Rodríguez-Ramírez CA; Dufresne A; D'Accorso N; Garcia NL
    Int J Biol Macromol; 2022 Jun; 211():626-638. PubMed ID: 35561858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipase induced highly hydrophobic nanofibrillated cellulose film for strain sensor application.
    Wang Y; Wang Q; Liu S; Ji X; Yang G; Chen J
    Carbohydr Polym; 2022 May; 284():119193. PubMed ID: 35287910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of endoglucanase and high-pressure homogenization post-treatments on mechanically grinded cellulose nanofibrils and their film performance.
    Xu Y; Yang S; Zhao P; Wu M; Song X; Ragauskas AJ
    Carbohydr Polym; 2021 Feb; 253():117253. PubMed ID: 33279003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addition of Cellulose Nanofibers to Control Surface Roughness for Hydrophobic Ceramic Coatings.
    Shin EA; Kim GH; Jung J; Lee SB; Lee CK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4492-4497. PubMed ID: 33714350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.