These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35702441)

  • 21. Organic-Inorganic Hybrid Planarization and Water Vapor Barrier Coatings on Cellulose Nanofibrils Substrates.
    Karasu F; Müller L; Ridaoui H; Ibn ElHaj M; Flodberg G; Aulin C; Axrup L; Leterrier Y
    Front Chem; 2018; 6():571. PubMed ID: 30525026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and Rheological Characterization of Cellulose Nanofibrils (CNFs) from Coir Fibers in Comparison to Wood and Cotton.
    Yue D; Qian X
    Polymers (Basel); 2018 Mar; 10(3):. PubMed ID: 30966355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tunable dialdehyde/dicarboxylate nanocelluloses by stoichiometrically optimized sequential periodate-chlorite oxidation for tough and wet shape recoverable aerogels.
    Patterson G; Hsieh YL
    Nanoscale Adv; 2020 Dec; 2(12):5623-5634. PubMed ID: 36133858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells.
    Gorgieva S; Girandon L; Kokol V
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():478-489. PubMed ID: 28183635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils.
    Navarro JRG; Edlund U
    Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs).
    Bai L; Liu Y; Ding A; Ren N; Li G; Liang H
    Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrophobization and smoothing of cellulose nanofibril films by cellulose ester coatings.
    Willberg-Keyriläinen P; Vartiainen J; Pelto J; Ropponen J
    Carbohydr Polym; 2017 Aug; 170():160-165. PubMed ID: 28521982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol.
    Jiang F; Hsieh YL
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20075-84. PubMed ID: 25341690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescently labeled cellulose nanofibrils for detection and loss analysis.
    Reid MS; Karlsson M; Abitbol T
    Carbohydr Polym; 2020 Dec; 250():116943. PubMed ID: 33049855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers.
    Liu S; Zhang Q; Gou S; Zhang L; Wang Z
    Carbohydr Polym; 2021 Jan; 251():117018. PubMed ID: 33142579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches.
    Qing Y; Sabo R; Zhu JY; Agarwal U; Cai Z; Wu Y
    Carbohydr Polym; 2013 Aug; 97(1):226-34. PubMed ID: 23769541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification of Cellulose with Succinic Anhydride in TBAA/DMSO Mixed Solvent under Catalyst-Free Conditions.
    Xin PP; Huang YB; Hse CY; Cheng HN; Huang C; Pan H
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface and structure characteristics, self-assembling, and solvent compatibility of holocellulose nanofibrils.
    Gu J; Hsieh YL
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4192-201. PubMed ID: 25635536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties.
    Chaabouni O; Boufi S
    Carbohydr Polym; 2017 Jan; 156():64-70. PubMed ID: 27842853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers.
    Carrillo CA; Nypelö T; Rojas OJ
    Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers.
    Fourati Y; Magnin A; Putaux JL; Boufi S
    Carbohydr Polym; 2020 Feb; 229():115554. PubMed ID: 31826520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulose nanofibrils manufactured by various methods with application as paper strength additives.
    Zeng J; Zeng Z; Cheng Z; Wang Y; Wang X; Wang B; Gao W
    Sci Rep; 2021 Jun; 11(1):11918. PubMed ID: 34099799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-Initiated Controlled Radical Polymerization Approach to In Situ Cross-Link Cellulose Nanofibrils with Inorganic Nanoparticles.
    Navarro JRG; Rostami J; Ahlinder A; Mietner JB; Bernin D; Saake B; Edlund U
    Biomacromolecules; 2020 May; 21(5):1952-1961. PubMed ID: 32223221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning the Nanoscale Properties of Phosphorylated Cellulose Nanofibril-Based Thin Films To Achieve Highly Fire-Protecting Coatings for Flammable Solid Materials.
    Ghanadpour M; Carosio F; Ruda MC; Wågberg L
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32543-32555. PubMed ID: 30148604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.