These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35702441)

  • 41. Preparation of Transparent and Thick CNF/Epoxy Composites by Controlling the Properties of Cellulose Nanofibrils.
    Park SY; Yook S; Goo S; Im W; Youn HJ
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32231002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual Counterion Systems of Carboxylated Nanocellulose Films with Tunable Mechanical, Hydrophilic, and Gas-Barrier Properties.
    Kubo R; Saito T; Isogai A
    Biomacromolecules; 2019 Apr; 20(4):1691-1698. PubMed ID: 30802032
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface Structuring and Water Interactions of Nanocellulose Filaments Modified with Organosilanes toward Wearable Materials.
    Cunha AG; Lundahl M; Ansari MF; Johansson LS; Campbell JM; Rojas OJ
    ACS Appl Nano Mater; 2018 Sep; 1(9):5279-5288. PubMed ID: 30320301
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Luminescent films functionalized with cellulose nanofibrils/CdTe quantum dots for anti-counterfeiting applications.
    Li X; Hu Y
    Carbohydr Polym; 2019 Jan; 203():167-175. PubMed ID: 30318200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antimicrobial and antihemolytic properties of a CNF/AgNP-chitosan film: A potential wound dressing material.
    Zaitun Hasibuan PA; Yuandani ; Tanjung M; Gea S; Pasaribu KM; Harahap M; Perangin-Angin YA; Prayoga A; Ginting JG
    Heliyon; 2021 Oct; 7(10):e08197. PubMed ID: 34754969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cellulose acetate fibers prepared from different raw materials with rapid synthesis method.
    Chen J; Xu J; Wang K; Cao X; Sun R
    Carbohydr Polym; 2016 Feb; 137():685-692. PubMed ID: 26686180
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Tunable Photoluminescent Composite of Cellulose Nanofibrils and CdS Quantum Dots.
    Wang Q; Tang A; Liu Y; Fang Z; Fu S
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335292
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of hornification on the isolation of anionic cellulose nanofibrils from Kraft pulp via maleic anhydride esterification.
    Zheng D; Sun X; Sun H; Zhu Y; Zhu J; Zhu P; Yu Z; Ye Y; Zhang Y; Jiang F
    Carbohydr Polym; 2024 Jun; 333():121961. PubMed ID: 38494205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface esterification of cellulose nanofibers by a simple organocatalytic methodology.
    Ávila Ramírez JA; Suriano CJ; Cerrutti P; Foresti ML
    Carbohydr Polym; 2014 Dec; 114():416-423. PubMed ID: 25263909
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.
    Cervin NT; Johansson E; Benjamins JW; Wågberg L
    Biomacromolecules; 2015 Mar; 16(3):822-31. PubMed ID: 25635472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relationship between rheological and morphological characteristics of cellulose nanofibrils in dilute dispersions.
    Albornoz-Palma G; Betancourt F; Mendonça RT; Chinga-Carrasco G; Pereira M
    Carbohydr Polym; 2020 Feb; 230():115588. PubMed ID: 31887943
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermoresponsive Poly(
    Mendoza DJ; Ayurini M; Browne C; Raghuwanshi VS; Simon GP; Hooper JF; Garnier G
    Biomacromolecules; 2022 Apr; 23(4):1610-1621. PubMed ID: 35041381
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.
    Sehaqui H; Kulasinski K; Pfenninger N; Zimmermann T; Tingaut P
    Biomacromolecules; 2017 Jan; 18(1):242-248. PubMed ID: 27958715
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Designing Cellulose Nanofibrils for Stabilization of Fluid Interfaces.
    Bertsch P; Arcari M; Geue T; Mezzenga R; Nyström G; Fischer P
    Biomacromolecules; 2019 Dec; 20(12):4574-4580. PubMed ID: 31714073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrophobic and self-recoverable cellulose nanofibrils/N-alkylated chitosan/poly(vinyl alcohol) sponge for selective and versatile oil/water separation.
    Li M; Liu H; Liu J; Pei Y; Zheng X; Tang K; Wang F
    Int J Biol Macromol; 2021 Dec; 192():169-179. PubMed ID: 34624380
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream.
    Wang Q; Zhu JY; Considine JM
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2527-34. PubMed ID: 23473973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films.
    Yu Z; Alsammarraie FK; Nayigiziki FX; Wang W; Vardhanabhuti B; Mustapha A; Lin M
    Food Res Int; 2017 Sep; 99(Pt 1):166-172. PubMed ID: 28784473
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of novel cellulose nanofibril and phenolic acid-based active and hydrophobic packaging films.
    LakshmiBalasubramaniam S; Howell C; Tajvidi M; Skonberg D
    Food Chem; 2022 Apr; 374():131773. PubMed ID: 34915376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.