These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35702934)

  • 1. Modes of adhesion of two Janus nanoparticles on the outer or inner side of lipid vesicles.
    Zhu Y; Sharma A; Spangler EJ; Laradji M
    Soft Matter; 2022 Jun; 18(25):4689-4698. PubMed ID: 35702934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial arrangements of spherical nanoparticles on lipid vesicles.
    Spangler EJ; Laradji M
    J Chem Phys; 2021 Jun; 154(24):244902. PubMed ID: 34241366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity
    Lin X; Lin X
    Biomater Sci; 2021 Dec; 9(24):8249-8258. PubMed ID: 34757373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Ordered Nanoassemblies of Janus Spherocylindrical Nanoparticles Adhering to Lipid Vesicles.
    Sharma A; Zhu Y; Spangler EJ; Hoang TB; Laradji M
    ACS Nano; 2024 May; 18(20):12957-12969. PubMed ID: 38720633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-mediated aggregation of anisotropically curved nanoparticles.
    Olinger AD; Spangler EJ; Kumar PB; Laradji M
    Faraday Discuss; 2016; 186():265-75. PubMed ID: 26778353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adhesion and Aggregation of Spherical Nanoparticles on Lipid Membranes.
    Laradji M; Kumar PBS; Spangler EJ
    Chem Phys Lipids; 2020 Nov; 233():104989. PubMed ID: 33120231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modes of adhesion of spherocylindrical nanoparticles to tensionless lipid bilayers.
    Sharma A; Zhu Y; Spangler EJ; Laradji M
    J Chem Phys; 2022 Jun; 156(23):234901. PubMed ID: 35732528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesicle-like structure of lipid-based nanoparticles as drug delivery system revealed by molecular dynamics simulations.
    Khalkhali M; Mohammadinejad S; Khoeini F; Rostamizadeh K
    Int J Pharm; 2019 Mar; 559():173-181. PubMed ID: 30684596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption.
    Aydin F; Dutt M
    J Phys Chem B; 2016 Jul; 120(27):6646-56. PubMed ID: 27340906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between charged nanoparticles and vesicles: coarse-grained molecular dynamics simulations.
    Liu L; Zhang J; Zhao X; Mao Z; Liu N; Zhang Y; Liu QH
    Phys Chem Chem Phys; 2016 Nov; 18(46):31946-31957. PubMed ID: 27844088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic Janus nanoparticles.
    Wiemann JT; Shen Z; Ye H; Li Y; Yu Y
    Nanoscale; 2020 Oct; 12(39):20326-20336. PubMed ID: 33006360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes.
    Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H
    Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry.
    Ou L; Corradi V; Tieleman DP; Liang Q
    J Phys Chem B; 2020 Jun; 124(22):4466-4475. PubMed ID: 32392064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophoresis and thermal orientation of Janus nanoparticles in thermal fields.
    Bresme F; Olarte-Plata JD; Chapman A; Albella P; Green C
    Eur Phys J E Soft Matter; 2022 Jul; 45(7):59. PubMed ID: 35809145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano Air Seeds Trapped in Mesoporous Janus Nanoparticles Facilitate Cavitation and Enhance Ultrasound Imaging.
    Tamarov K; Sviridov A; Xu W; Malo M; Andreev V; Timoshenko V; Lehto VP
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35234-35243. PubMed ID: 28921952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain-selective disruption and compression of phase-separated lipid vesicles by amphiphilic Janus nanoparticles.
    Wiemann JT; Nguyen D; Li Y; Yu Y
    iScience; 2022 Dec; 25(12):105525. PubMed ID: 36465108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Pathway of Lipid Phase-Dependent Lipid Corona Formation on Phenylalanine-Functionalized Gold Nanoparticles: A Combined Experimental and Molecular Dynamics Simulation Study.
    Maity A; De SK; Bagchi D; Lee H; Chakraborty A
    J Phys Chem B; 2022 Mar; 126(11):2241-2255. PubMed ID: 35286092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-close-packed hexagonal self-assembly of Janus nanoparticles on planar membranes.
    Zhu Y; Sharma A; Spangler EJ; Laradji M
    Soft Matter; 2023 Oct; 19(39):7591-7601. PubMed ID: 37755137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface ligand rigidity modulates lipid raft affinity of ultra-small hydrophobic nanoparticles: insights from molecular dynamics simulations.
    Lin X; Lin X
    Nanoscale; 2021 Jun; 13(21):9825-9833. PubMed ID: 34032262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid Vesicle Interaction with Hydrophobic Surfaces: A Coarse-Grained Molecular Dynamics Study.
    Mannelli I; Sagués F; Pruneri V; Reigada R
    Langmuir; 2016 Dec; 32(48):12632-12640. PubMed ID: 27808519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.