These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35703326)

  • 1. Nanostructure engineering of two-dimensional diamonds toward high thermal conductivity and approaching zero Poisson's ratio.
    Hu Y; Li D; Feng C; Li S; Chen B; Li D; Zhang G
    Phys Chem Chem Phys; 2022 Jun; 24(25):15340-15348. PubMed ID: 35703326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhigh flexibility and out-of-plane piezoelectricity together with strong anharmonic phonon scattering induced extremely low lattice thermal conductivity in hexagonal buckled CdX (X
    Mohanta MK; Rawat A; Jena N; Ahammed R; De Sarkar A
    J Phys Condens Matter; 2020 Jun; 32(35):. PubMed ID: 32340009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering.
    Zhu L; Li W; Ding F
    Nanoscale; 2019 Mar; 11(10):4248-4257. PubMed ID: 30623946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial thermal transport between graphene and diamane.
    Hong Y; Kretchmer JS
    J Chem Phys; 2022 Apr; 156(16):164703. PubMed ID: 35489998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remarkable decrease in lattice thermal conductivity of transition metals borides TiB
    Li D; Hu Y; Ding G; Feng C; Li D
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35213854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-Low Thermal Conductivity of Moiré Diamanes.
    Chowdhury S; Demin VA; Chernozatonskii LA; Kvashnin AG
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant thermal conductivity and strain thermal response of nitrogen substituted diamane: a machine-learning-based prediction.
    Wang B; Huang Z; Xu X; Fan S; Zhao K; Zhu J
    Nanoscale; 2024 Aug; 16(30):14387-14401. PubMed ID: 39011749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles calculations of phonon behaviors in graphether: a comparative study with graphene.
    Yang X; Han D; Fan H; Wang M; Du M; Wang X
    Phys Chem Chem Phys; 2021 Jan; 23(1):123-130. PubMed ID: 33331842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the vibrational characteristics of diamane nanosheet based on the Kirchhoff plate model and atomistic simulations.
    Zheng Z; Deng F; Su Z; Zhan H; Wang L
    Discov Nano; 2023 Aug; 18(1):108. PubMed ID: 37651045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations.
    Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G
    Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural stability and electronic and mechanical properties of nitrogen- and boron-doped fluorinated diamane.
    Gao L; Liu Y; Liang Y; Gao N; Liu J; Li H
    Phys Chem Chem Phys; 2023 Sep; 25(36):24518-24525. PubMed ID: 37656439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon Transport and Thermoelectric Properties of Imidazole-Graphyne.
    Chen Y; Sun J; Kang W; Wang Q
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide.
    Hu Y; Li D; Yin Y; Li S; Zhou H; Zhang G
    RSC Adv; 2020 Jun; 10(42):25305-25310. PubMed ID: 35517492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A C
    Shen Y; Wang FQ; Liu J; Wang Q
    Phys Chem Chem Phys; 2019 Dec; 22(1):306-312. PubMed ID: 31813946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large exciton binding energy, superior mechanical flexibility, and ultra-low lattice thermal conductivity in BiI
    Xiao WZ; Xiao G; Wang ZJ; Wang LL
    J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34706358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auxetic B
    Wang B; Wu Q; Zhang Y; Ma L; Wang J
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33231-33237. PubMed ID: 31436953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles.
    Qin G; Yan QB; Qin Z; Yue SY; Hu M; Su G
    Phys Chem Chem Phys; 2015 Feb; 17(7):4854-8. PubMed ID: 25594447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four-phonon and electron-phonon scattering effects on thermal properties in two-dimensional 2H-TaS
    Zhang Y; Tong Z; Pecchia A; Yam C; Dumitrică T; Frauenheim T
    Nanoscale; 2022 Sep; 14(36):13053-13058. PubMed ID: 36040796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.