BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35703448)

  • 1. Theoretical modeling of ice lithography on amorphous solid water.
    Liu T; Tong X; Tian S; Xie Y; Zhu M; Feng B; Pan X; Zheng R; Wu S; Zhao D; Chen Y; Lu B; Qiu M
    Nanoscale; 2022 Jun; 14(25):9045-9052. PubMed ID: 35703448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Nanoprinting by Electron-Beam with an Ice Resist.
    Wu S; Zhao D; Qiu M
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1652-1658. PubMed ID: 34933558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-Beam Patterning of Vapor-Deposited Solid Anisole.
    Zhao D; Chang B; Beleggia M
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6436-6441. PubMed ID: 31942796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional in Situ Electron-Beam Lithography Using Water Ice.
    Hong Y; Zhao D; Liu D; Ma B; Yao G; Li Q; Han A; Qiu M
    Nano Lett; 2018 Aug; 18(8):5036-5041. PubMed ID: 29940114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-Free Nanofabrication Based on Ice-Assisted Electron-Beam Lithography.
    Hong Y; Zhao D; Wang J; Lu J; Yao G; Liu D; Luo H; Li Q; Qiu M
    Nano Lett; 2020 Dec; 20(12):8841-8846. PubMed ID: 33185450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Ice Resists.
    Tiddi W; Elsukova A; Le HT; Liu P; Beleggia M; Han A
    Nano Lett; 2017 Dec; 17(12):7886-7891. PubMed ID: 29156134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale.
    Manfrinato VR; Stein A; Zhang L; Nam CY; Yager KG; Stach EA; Black CT
    Nano Lett; 2017 Aug; 17(8):4562-4567. PubMed ID: 28418673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography.
    Schnauber P; Schmidt R; Kaganskiy A; Heuser T; Gschrey M; Rodt S; Reitzenstein S
    Nanotechnology; 2016 May; 27(19):195301. PubMed ID: 27023850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of e-beam lithography parameters for nanofabrication of sub-50 nm gold nanowires and nanogaps based on a bilayer lift-off process.
    Sahin O; Albayrak OM; Yapici MK
    Nanotechnology; 2024 Jul; ():. PubMed ID: 38959870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art.
    Grigorescu AE; Hagen CW
    Nanotechnology; 2009 Jul; 20(29):292001. PubMed ID: 19567961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopatterning on nonplanar and fragile substrates with ice resists.
    Han A; Kuan A; Golovchenko J; Branton D
    Nano Lett; 2012 Feb; 12(2):1018-21. PubMed ID: 22229744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mr-EBL: ultra-high sensitivity negative-tone electron beam resist for highly selective silicon etching and large-scale direct patterning of permanent structures.
    Taal AJ; Rabinowitz J; Shepard KL
    Nanotechnology; 2021 Mar; 32(24):. PubMed ID: 33706291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ice lithography instrument.
    Han A; Chervinsky J; Branton D; Golovchenko JA
    Rev Sci Instrum; 2011 Jun; 82(6):065110. PubMed ID: 21721733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional electron energy deposition modeling of cathodoluminescence emission near threading dislocations in GaN and electron-beam lithography exposure parameters for a PMMA resist.
    Demers H; Poirier-Demers N; Phillips MR; de Jonge N; Drouin D
    Microsc Microanal; 2012 Dec; 18(6):1220-8. PubMed ID: 23146129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Molecular Weight on the Feature Size in Organic Ice Resists.
    Elsukova A; Han A; Zhao D; Beleggia M
    Nano Lett; 2018 Dec; 18(12):7576-7582. PubMed ID: 30398886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct electron-beam patterning of monolayer MoS
    Yao G; Zhao D; Hong Y; Wu S; Liu D; Qiu M
    Nanoscale; 2020 Nov; 12(44):22473-22477. PubMed ID: 33165481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method.
    Samardak A; Anisimova M; Samardak A; Ognev A
    Beilstein J Nanotechnol; 2015; 6():976-86. PubMed ID: 25977869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation and experimental study of aspect ratio limitation in Fresnel zone plates for hard-x-ray optics.
    Liu J; Shao J; Zhang S; Ma Y; Taksatorn N; Mao C; Chen Y; Deng B; Xiao T
    Appl Opt; 2015 Nov; 54(32):9630-6. PubMed ID: 26560796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the resolution limits of electron-beam lithography: direct measurement of the point-spread function.
    Manfrinato VR; Wen J; Zhang L; Yang Y; Hobbs RG; Baker B; Su D; Zakharov D; Zaluzec NJ; Miller DJ; Stach EA; Berggren KK
    Nano Lett; 2014 Aug; 14(8):4406-12. PubMed ID: 24960635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Nickel-Based Negative Tone Metal Oxide Cluster Resists for Sub-10 nm Electron Beam and Helium Ion Beam Lithography.
    Kumar R; Chauhan M; Moinuddin MG; Sharma SK; Gonsalves KE
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19616-19624. PubMed ID: 32267144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.