These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35703549)

  • 1. Improving Trendelenburg position effectiveness by varying cardiopulmonary bypass flow.
    Ho R; McDonald C; Pauls JP; Li Z
    Perfusion; 2023 Sep; 38(6):1213-1221. PubMed ID: 35703549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of aortic cannulation depth on air emboli transport during cardiopulmonary bypass: A computational study.
    Ho R; McDonald C; Pauls JP; Li Z
    Perfusion; 2023 Jul; 38(5):993-1001. PubMed ID: 35603520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aortic cannula orientation and flow impacts embolic trajectories: computational cardiopulmonary bypass.
    Ho R; McDonald C; Pauls JP; Li Z
    Perfusion; 2020 Jul; 35(5):409-416. PubMed ID: 31814525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs.
    Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS
    Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of risks for cerebral embolism associated with the hemodynamics of cardiopulmonary bypass cannula: a numerical model.
    Avrahami I; Dilmoney B; Azuri A; Brand M; Cohen O; Shani L; Nir RR; Bolotin G
    Artif Organs; 2013 Oct; 37(10):857-65. PubMed ID: 24138494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased cerebral emboli during distal aortic arch cannulation: a randomized clinical trial.
    Borger MA; Taylor RL; Weisel RD; Kulkarni G; Benaroia M; Rao V; Cohen G; Fedorko L; Feindel CM
    J Thorac Cardiovasc Surg; 1999 Oct; 118(4):740-5. PubMed ID: 10504642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound detection of micro-emboli in the middle cerebral artery during cardiopulmonary bypass surgery.
    Deverall PB; Padayachee TS; Parsons S; Theobold R; Battistessa SA
    Eur J Cardiothorac Surg; 1988; 2(4):256-60. PubMed ID: 3078422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooling gradients and formation of gaseous microemboli with cardiopulmonary bypass: an echocardiographic study.
    Geissler HJ; Allen SJ; Mehlhorn U; Davis KL; de Vivie ER; Kurusz M; Butler BD
    Ann Thorac Surg; 1997 Jul; 64(1):100-4. PubMed ID: 9236342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residual air in the venous cannula increases cerebral embolization at the onset of cardiopulmonary bypass.
    Rodriguez RA; Rubens F; Belway D; Nathan HJ
    Eur J Cardiothorac Surg; 2006 Feb; 29(2):175-80. PubMed ID: 16376562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral emboli during cardiopulmonary bypass: effect of perfusionist interventions and aortic cannulas.
    Borger MA; Feindel CM
    J Extra Corpor Technol; 2002 Mar; 34(1):29-33. PubMed ID: 11911626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators.
    Padayachee TS; Parsons S; Theobold R; Linley J; Gosling RG; Deverall PB
    Ann Thorac Surg; 1987 Sep; 44(3):298-302. PubMed ID: 2957966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of cardiopulmonary bypass parameters on embolus transport in a patient-specific aorta.
    Arefin NM; Good BC
    Biomech Model Mechanobiol; 2024 Jun; ():. PubMed ID: 38884891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel emboli protection cannula during cardiac surgery: first animal study.
    Shani L; Cohen O; Beckerman Z; Nir RR; Bolotin G
    Asian Cardiovasc Thorac Ann; 2014 Jan; 22(1):25-30. PubMed ID: 24585639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimate of the maximum absorption rate of microscopic arterial air emboli after entry into the arterial circulation during cardiac surgery.
    Dexter F; Hindman BJ; Marshall JS
    Perfusion; 1996 Nov; 11(6):445-50. PubMed ID: 8971944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures.
    Dhami R; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2014 Jan; 38(1):56-63. PubMed ID: 23876021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microemboli detection on extracorporeal bypass circuits.
    Lynch JE; Riley JB
    Perfusion; 2008 Jan; 23(1):23-32. PubMed ID: 18788214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air embolism: diagnosis and management.
    Malik N; Claus PL; Illman JE; Kligerman SJ; Moynagh MR; Levin DL; Woodrum DA; Arani A; Arunachalam SP; Araoz PA
    Future Cardiol; 2017 Jul; 13(4):365-378. PubMed ID: 28644058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaseous micro-emboli activity during cardiopulmonary bypass in adults: pulsatile flow versus nonpulsatile flow.
    Dodonov M; Milano A; Onorati F; Dal Corso B; Menon T; Ferrarini D; Tessari M; Faggian G; Mazzucco A
    Artif Organs; 2013 Apr; 37(4):357-67. PubMed ID: 23489040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced embolic load during clinical cardiopulmonary bypass using a 20 micron arterial filter.
    Jabur GN; Willcox TW; Zahidani SH; Sidhu K; Mitchell SJ
    Perfusion; 2014 May; 29(3):219-25. PubMed ID: 24009263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of two different extracorporeal circuits on cerebral embolization during cardiopulmonary bypass in children.
    Rodriguez RA; Belway D
    Perfusion; 2006 Dec; 21(5):247-53. PubMed ID: 17201077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.