These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 35704187)

  • 41. The interplay of RNA:DNA hybrid structure and G-quadruplexes determines the outcome of R-loop-replisome collisions.
    Kumar C; Batra S; Griffith JD; Remus D
    Elife; 2021 Sep; 10():. PubMed ID: 34494544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNase H1 directs origin-specific initiation of DNA replication in human mitochondria.
    Posse V; Al-Behadili A; Uhler JP; Clausen AR; Reyes A; Zeviani M; Falkenberg M; Gustafsson CM
    PLoS Genet; 2019 Jan; 15(1):e1007781. PubMed ID: 30605451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNase H enables efficient repair of R-loop induced DNA damage.
    Amon JD; Koshland D
    Elife; 2016 Dec; 5():. PubMed ID: 27938663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MapR: A Method for Identifying Native R-Loops Genome Wide.
    Yan Q; Sarma K
    Curr Protoc Mol Biol; 2020 Mar; 130(1):e113. PubMed ID: 31943854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork.
    Parajuli S; Teasley DC; Murali B; Jackson J; Vindigni A; Stewart SA
    J Biol Chem; 2017 Sep; 292(37):15216-15224. PubMed ID: 28717002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability.
    Reddy K; Schmidt MH; Geist JM; Thakkar NP; Panigrahi GB; Wang YH; Pearson CE
    Nucleic Acids Res; 2014; 42(16):10473-87. PubMed ID: 25147206
    [TBL] [Abstract][Full Text] [Related]  

  • 47. R-loop-dependent replication and genomic instability in bacteria.
    Drolet M; Brochu J
    DNA Repair (Amst); 2019 Dec; 84():102693. PubMed ID: 31471263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Replication protein A binds RNA and promotes R-loop formation.
    Mazina OM; Somarowthu S; Kadyrova LY; Baranovskiy AG; Tahirov TH; Kadyrov FA; Mazin AV
    J Biol Chem; 2020 Oct; 295(41):14203-14213. PubMed ID: 32796030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain.
    Gaidamakov SA; Gorshkova II; Schuck P; Steinbach PJ; Yamada H; Crouch RJ; Cerritelli SM
    Nucleic Acids Res; 2005; 33(7):2166-75. PubMed ID: 15831789
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recognition of RNA by the S9.6 antibody creates pervasive artifacts when imaging RNA:DNA hybrids.
    Smolka JA; Sanz LA; Hartono SR; Chédin F
    J Cell Biol; 2021 Jun; 220(6):. PubMed ID: 33830170
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Walking a tightrope: The complex balancing act of R-loops in genome stability.
    Brickner JR; Garzon JL; Cimprich KA
    Mol Cell; 2022 Jun; 82(12):2267-2297. PubMed ID: 35508167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Defects in RNase H2 Stimulate DNA Break Repair by RNA Reverse Transcribed into cDNA.
    Keskin H; Storici F
    Microrna; 2015; 4(2):109-16. PubMed ID: 26456534
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mapping Native R-Loops Genome-wide Using a Targeted Nuclease Approach.
    Yan Q; Shields EJ; Bonasio R; Sarma K
    Cell Rep; 2019 Oct; 29(5):1369-1380.e5. PubMed ID: 31665646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids.
    Lima WF; Crooke ST
    Biochemistry; 1997 Jan; 36(2):390-8. PubMed ID: 9003192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. qDRIP: a method to quantitatively assess RNA-DNA hybrid formation genome-wide.
    Crossley MP; Bocek MJ; Hamperl S; Swigut T; Cimprich KA
    Nucleic Acids Res; 2020 Aug; 48(14):e84. PubMed ID: 32544226
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural basis of the RNase H1 activity on stereo regular borano phosphonate DNA/RNA hybrids.
    Johnson CN; Spring AM; Sergueev D; Shaw BR; Germann MW
    Biochemistry; 2011 May; 50(19):3903-12. PubMed ID: 21443203
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crystal structure of metagenome-derived LC11-RNase H1 in complex with RNA/DNA hybrid.
    Nguyen TN; You DJ; Matsumoto H; Kanaya E; Koga Y; Kanaya S
    J Struct Biol; 2013 May; 182(2):144-54. PubMed ID: 23500886
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNase H is an exo- and endoribonuclease with asymmetric directionality, depending on the binding mode to the structural variants of RNA:DNA hybrids.
    Lee H; Cho H; Kim J; Lee S; Yoo J; Park D; Lee G
    Nucleic Acids Res; 2022 Feb; 50(4):1801-1814. PubMed ID: 34788459
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of R-Loop Structures by Immunofluorescence Using the S9.6 Monoclonal Antibody.
    Skourti-Stathaki K
    Methods Mol Biol; 2022; 2528():21-29. PubMed ID: 35704182
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Viable RNaseH1 knockout mice show RNaseH1 is essential for R loop processing, mitochondrial and liver function.
    Lima WF; Murray HM; Damle SS; Hart CE; Hung G; De Hoyos CL; Liang XH; Crooke ST
    Nucleic Acids Res; 2016 Jun; 44(11):5299-312. PubMed ID: 27131367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.