These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35704541)

  • 1. Are Graph Convolutional Networks With Random Weights Feasible?
    Huang C; Li M; Cao F; Fujita H; Li Z; Wu X
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):2751-2768. PubMed ID: 35704541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-graph Fusion Graph Convolutional Networks with pseudo-label supervision.
    Yang Y; Sun Y; Ju F; Wang S; Gao J; Yin B
    Neural Netw; 2023 Jan; 158():305-317. PubMed ID: 36493533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locality preserving dense graph convolutional networks with graph context-aware node representations.
    Liu W; Gong M; Tang Z; Qin AK; Sheng K; Xu M
    Neural Netw; 2021 Nov; 143():108-120. PubMed ID: 34116289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neighborhood Pattern Is Crucial for Graph Convolutional Networks Performing Node Classification.
    Zhao G; Wang T; Li Y; Jin Y; Lang C; Feng S
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8456-8469. PubMed ID: 37015384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random projection forest initialization for graph convolutional networks.
    Alshammari M; Stavrakakis J; Ahmed AF; Takatsuka M
    MethodsX; 2023 Dec; 11():102315. PubMed ID: 37601292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperbolic Graph Convolutional Neural Networks.
    Chami I; Ying R; RĂ© C; Leskovec J
    Adv Neural Inf Process Syst; 2019 Dec; 32():4869-4880. PubMed ID: 32256024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the role of edge distribution in graph convolutional networks.
    He L; Bai L; Yang X; Liang Z; Liang J
    Neural Netw; 2023 Nov; 168():459-470. PubMed ID: 37806139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder.
    Pan J; Lin H; Dong Y; Wang Y; Ji Y
    Comput Biol Med; 2022 Sep; 148():105823. PubMed ID: 35872410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and effective convolutional operator for node classification without features by graph convolutional networks.
    Jiao Q; Zhang H; Wu J; Wang N; Liu G; Liu Y
    PLoS One; 2024; 19(4):e0301476. PubMed ID: 38687815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RA-GCN: Graph convolutional network for disease prediction problems with imbalanced data.
    Ghorbani M; Kazi A; Soleymani Baghshah M; Rabiee HR; Navab N
    Med Image Anal; 2022 Jan; 75():102272. PubMed ID: 34731774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep graph convolutional neural network architecture for graph classification.
    Zhou Y; Huo H; Hou Z; Bu F
    PLoS One; 2023; 18(3):e0279604. PubMed ID: 36897837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks.
    Min Y; Wenkel F; Wolf G
    Adv Neural Inf Process Syst; 2020 Dec; 33():14498-14508. PubMed ID: 37337543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A learnable sampling method for scalable graph neural networks.
    Zhao W; Guo T; Yu X; Han C
    Neural Netw; 2023 May; 162():412-424. PubMed ID: 36963145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature-Attention Graph Convolutional Networks for Noise Resilient Learning.
    Shi M; Tang Y; Zhu X; Zhuang Y; Lin M; Liu J
    IEEE Trans Cybern; 2022 Aug; 52(8):7719-7731. PubMed ID: 35104237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TE-HI-GCN: An Ensemble of Transfer Hierarchical Graph Convolutional Networks for Disorder Diagnosis.
    Li L; Jiang H; Wen G; Cao P; Xu M; Liu X; Yang J; Zaiane O
    Neuroinformatics; 2022 Apr; 20(2):353-375. PubMed ID: 34761367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified deep semi-supervised graph learning scheme based on nodes re-weighting and manifold regularization.
    Dornaika F; Bi J; Zhang C
    Neural Netw; 2023 Jan; 158():188-196. PubMed ID: 36462365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning Disentangled Graph Convolutional Networks Locally and Globally.
    Guo J; Huang K; Yi X; Zhang R
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3640-3651. PubMed ID: 35969544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LaenNet: Learning robust GCNs by propagating labels.
    Zhang C; Li X; Pei H; Zhang Z; Liu B; Yang B
    Neural Netw; 2023 Nov; 168():652-664. PubMed ID: 37847949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Representation Learning for Dynamic Graphs Based on Graph Convolutional Networks.
    Gao C; Zhu J; Zhang F; Wang Z; Li X
    IEEE Trans Cybern; 2023 Jun; 53(6):3599-3612. PubMed ID: 35333735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attention-based stackable graph convolutional network for multi-view learning.
    Xu Z; Chen W; Zou Y; Fang Z; Wang S
    Neural Netw; 2024 Dec; 180():106648. PubMed ID: 39197306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.