These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35704573)

  • 1. Autonomous push button-controlled rapid insulin release from a piezoelectrically activated subcutaneous cell implant.
    Zhao H; Xue S; Hussherr MD; Teixeira AP; Fussenegger M
    Sci Adv; 2022 Jun; 8(24):eabm4389. PubMed ID: 35704573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice.
    Krawczyk K; Xue S; Buchmann P; Charpin-El-Hamri G; Saxena P; Hussherr MD; Shao J; Ye H; Xie M; Fussenegger M
    Science; 2020 May; 368(6494):993-1001. PubMed ID: 32467389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway of transient electronics towards connected biomedical applications.
    Dutta A; Cheng H
    Nanoscale; 2023 Mar; 15(9):4236-4249. PubMed ID: 36688506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fully Biodegradable Battery for Self-Powered Transient Implants.
    Huang X; Wang D; Yuan Z; Xie W; Wu Y; Li R; Zhao Y; Luo D; Cen L; Chen B; Wu H; Xu H; Sheng X; Zhang M; Zhao L; Yin L
    Small; 2018 Jul; 14(28):e1800994. PubMed ID: 29806124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-Glucose-Powered Metabolic Fuel Cell for Self-Sufficient Bioelectronics.
    Maity D; Guha Ray P; Buchmann P; Mansouri M; Fussenegger M
    Adv Mater; 2023 May; 35(21):e2300890. PubMed ID: 36893359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of AlN-based flexible piezoelectric pressure sensor integrated into an implantable artificial pancreas.
    Signore MA; Rescio G; De Pascali C; Iacovacci V; Dario P; Leone A; Quaranta F; Taurino A; Siciliano P; Francioso L
    Sci Rep; 2019 Nov; 9(1):17130. PubMed ID: 31748638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Self-Powered Piezoelectric and Triboelectric Sensors: From Material and Structure Design to Frontier Applications of Artificial Intelligence.
    Yang Z; Zhu Z; Chen Z; Liu M; Zhao B; Liu Y; Cheng Z; Wang S; Yang W; Yu T
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design considerations for piezoelectrically powered electrical stimulation: The balance between power generation and fatigue resistance.
    Krech ED; LaPierre LJ; Tuncdemir S; Gurdal AE; Haas EG; Arnold PM; Friis EA
    J Mech Behav Biomed Mater; 2022 Feb; 126():104976. PubMed ID: 34864397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Image-Guided Ultrasonic Wireless Power Transmission to Millimeter-Sized Biomedical Implants.
    Meng M; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():364-367. PubMed ID: 31945916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet- and Microwave-Protecting, Self-Cleaning e-Skin for Efficient Energy Harvesting and Tactile Mechanosensing.
    Kar E; Bose N; Dutta B; Mukherjee N; Mukherjee S
    ACS Appl Mater Interfaces; 2019 May; 11(19):17501-17512. PubMed ID: 31007019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body-Integrated Self-Powered System for Wearable and Implantable Applications.
    Shi B; Liu Z; Zheng Q; Meng J; Ouyang H; Zou Y; Jiang D; Qu X; Yu M; Zhao L; Fan Y; Wang ZL; Li Z
    ACS Nano; 2019 May; 13(5):6017-6024. PubMed ID: 31083973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical devices.
    Sanni A; Vilches A; Toumazou C
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):297-308. PubMed ID: 23853174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses.
    Ahnood A; Cheriton R; Bruneau A; Belcourt JA; Ndabakuranye JP; Lemaire W; Hilkes R; Fontaine R; Cook JPD; Hinzer K; Prawer S
    Adv Biosyst; 2020 Nov; 4(11):e2000055. PubMed ID: 33084251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivering optical power to subcutaneous implanted devices.
    Ayazian S; Hassibi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2874-7. PubMed ID: 22254941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Sugar-Assisted, Chemically Reinforced, Highly Durable Piezoorganic Nanogenerator with Superior Power Density for Self-Powered Wearable Electronics.
    Maity K; Garain S; Henkel K; Schmeißer D; Mandal D
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44018-44032. PubMed ID: 30456939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniaturization of implantable wireless power receiver.
    Poon AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3217-20. PubMed ID: 19964059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple remote-controlled power switch for internalized bioelectronic instrumentation.
    Varosi SM; Brigmon RL; Besch EL
    IEEE Trans Biomed Eng; 1989 Aug; 36(8):858-60. PubMed ID: 2759645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.