These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35704609)

  • 1. Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots.
    Ma S; Pei J; Zhang W; Wang G; Feng D; Yu F; Song C; Qu H; Ma C; Lu M; Liu F; Zhou W; Wu Y; Lin Y; Li H; Wang T; Song J; Liu X; Li G; Zhao R; Shi L
    Sci Robot; 2022 Jun; 7(67):eabk2948. PubMed ID: 35704609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic computing hardware and neural architectures for robotics.
    Sandamirskaya Y; Kaboli M; Conradt J; Celikel T
    Sci Robot; 2022 Jun; 7(67):eabl8419. PubMed ID: 35767646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network approach to dynamic task assignment of multirobots.
    Zhu A; Yang SX
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1278-87. PubMed ID: 17001987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insect-inspired AI for autonomous robots.
    de Croon GCHE; Dupeyroux JJG; Fuller SB; Marshall JAR
    Sci Robot; 2022 Jun; 7(67):eabl6334. PubMed ID: 35704608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rise of intelligent matter.
    Kaspar C; Ravoo BJ; van der Wiel WG; Wegner SV; Pernice WHP
    Nature; 2021 Jun; 594(7863):345-355. PubMed ID: 34135518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards spike-based machine intelligence with neuromorphic computing.
    Roy K; Jaiswal A; Panda P
    Nature; 2019 Nov; 575(7784):607-617. PubMed ID: 31776490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Trajectory Generation for Robotic Control on the Neuromorphic Research Chip Loihi.
    Michaelis C; Lehr AB; Tetzlaff C
    Front Neurorobot; 2020; 14():589532. PubMed ID: 33324191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems.
    Yang JQ; Wang R; Ren Y; Mao JY; Wang ZP; Zhou Y; Han ST
    Adv Mater; 2020 Dec; 32(52):e2003610. PubMed ID: 33165986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-to-End Implementation of Various Hybrid Neural Networks on a Cross-Paradigm Neuromorphic Chip.
    Wang G; Ma S; Wu Y; Pei J; Zhao R; Shi L
    Front Neurosci; 2021; 15():615279. PubMed ID: 33603643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
    Milde MB; Blum H; Dietmüller A; Sumislawska D; Conradt J; Indiveri G; Sandamirskaya Y
    Front Neurorobot; 2017; 11():28. PubMed ID: 28747883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Intelligent Path Planning System of Agricultural Robot via Reinforcement Learning.
    Yang J; Ni J; Li Y; Wen J; Chen D
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TripleBrain: A Compact Neuromorphic Hardware Core With Fast On-Chip Self-Organizing and Reinforcement Spike-Timing Dependent Plasticity.
    Wang H; He Z; Wang T; He J; Zhou X; Wang Y; Liu L; Wu N; Tian M; Shi C
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):636-650. PubMed ID: 35802542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hardware Realization of the Pattern Recognition with an Artificial Neuromorphic Device Exhibiting a Short-Term Memory.
    Przyczyna D; Lis M; Pilarczyk K; Szaciłowski K
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31357695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid and scalable brain-inspired robotic platform.
    Zou Z; Zhao R; Wu Y; Yang Z; Tian L; Wu S; Wang G; Yu Y; Zhao Q; Chen M; Pei J; Chen F; Zhang Y; Song S; Zhao M; Shi L
    Sci Rep; 2020 Oct; 10(1):18160. PubMed ID: 33097742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hardware-Based Hopfield Neuromorphic Computing for Fall Detection.
    Yu Z; Zahid A; Ansari S; Abbas H; Abdulghani AM; Heidari H; Imran MA; Abbasi QH
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning.
    Detorakis G; Sheik S; Augustine C; Paul S; Pedroni BU; Dutt N; Krichmar J; Cauwenberghs G; Neftci E
    Front Neurosci; 2018; 12():583. PubMed ID: 30210274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intelligent service-based network architecture for wearable robots.
    Lee KK; Zhang P; Xu Y; Liang B
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1874-85. PubMed ID: 15462452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.