BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35704992)

  • 1. A Bayesian-optimized design for an interpretable convolutional neural network to decode and analyze the P300 response in autism.
    Borra D; Magosso E; Castelo-Branco M; Simões M
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35704992
    [No Abstract]   [Full Text] [Related]  

  • 2. Decoding movement kinematics from EEG using an interpretable convolutional neural network.
    Borra D; Mondini V; Magosso E; Müller-Putz GR
    Comput Biol Med; 2023 Oct; 165():107323. PubMed ID: 37619325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lightweight Multi-Scale Convolutional Neural Network for P300 Decoding: Analysis of Training Strategies and Uncovering of Network Decision.
    Borra D; Fantozzi S; Magosso E
    Front Hum Neurosci; 2021; 15():655840. PubMed ID: 34305550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination.
    Borra D; Fantozzi S; Magosso E
    Neural Netw; 2020 Sep; 129():55-74. PubMed ID: 32502798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor decoding from the posterior parietal cortex using deep neural networks.
    Borra D; Filippini M; Ursino M; Fattori P; Magosso E
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37130514
    [No Abstract]   [Full Text] [Related]  

  • 6. Regional-Asymmetric Adaptive Graph Convolutional Neural Network for Diagnosis of Autism in Children With Resting-State EEG.
    Hu W; Jiang G; Han J; Li X; Xie P
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():200-211. PubMed ID: 38145528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eliminating or Shortening the Calibration for a P300 Brain-Computer Interface Based on a Convolutional Neural Network and Big Electroencephalography Data: An Online Study.
    Gao W; Huang W; Li M; Gu Z; Pan J; Yu T; Yu ZL; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1754-1763. PubMed ID: 37030734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization.
    Farahat A; Reichert C; Sweeney-Reed CM; Hinrichs H
    J Neural Eng; 2019 Oct; 16(6):066010. PubMed ID: 31416059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-Independent Brain-Computer Interfaces Based on Deep Convolutional Neural Networks.
    Kwon OY; Lee MH; Guan C; Lee SW
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):3839-3852. PubMed ID: 31725394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge-driven feature component interpretable network for motor imagery classification.
    Niu X; Lu N; Kang J; Cui Z
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34942608
    [No Abstract]   [Full Text] [Related]  

  • 12. Decoding and interpreting cortical signals with a compact convolutional neural network.
    Petrosyan A; Sinkin M; Lebedev M; Ossadtchi A
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33524962
    [No Abstract]   [Full Text] [Related]  

  • 13. Interpretable functional specialization emerges in deep convolutional networks trained on brain signals.
    Hammer J; Schirrmeister RT; Hartmann K; Marusic P; Schulze-Bonhage A; Ball T
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35421857
    [No Abstract]   [Full Text] [Related]  

  • 14. An efficient deep learning framework for P300 evoked related potential detection in EEG signal.
    Havaei P; Zekri M; Mahmoudzadeh E; Rabbani H
    Comput Methods Programs Biomed; 2023 Feb; 229():107324. PubMed ID: 36586179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of interpretability for deep learning algorithms in EEG emotion recognition: A case study in autism.
    Mayor Torres JM; Medina-DeVilliers S; Clarkson T; Lerner MD; Riccardi G
    Artif Intell Med; 2023 Sep; 143():102545. PubMed ID: 37673554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning Invariant Patterns Based on a Convolutional Neural Network and Big Electroencephalography Data for Subject-Independent P300 Brain-Computer Interfaces.
    Gao W; Yu T; Yu JG; Gu Z; Li K; Huang Y; Yu ZL; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1047-1057. PubMed ID: 34033543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IENet: a robust convolutional neural network for EEG based brain-computer interfaces.
    Du Y; Liu J
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585
    [No Abstract]   [Full Text] [Related]  

  • 18. Spatio-Spectral Feature Representation for Motor Imagery Classification Using Convolutional Neural Networks.
    Bang JS; Lee MH; Fazli S; Guan C; Lee SW
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):3038-3049. PubMed ID: 33449886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features.
    Aellen FM; Göktepe-Kavis P; Apostolopoulos S; Tzovara A
    J Neurosci Methods; 2021 Dec; 364():109367. PubMed ID: 34563599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosis of Autism Spectrum Disorders in Young Children Based on Resting-State Functional Magnetic Resonance Imaging Data Using Convolutional Neural Networks.
    Aghdam MA; Sharifi A; Pedram MM
    J Digit Imaging; 2019 Dec; 32(6):899-918. PubMed ID: 30963340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.