BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35705328)

  • 1. Dynamic regulatory module networks for inference of cell type-specific transcriptional networks.
    Siahpirani AF; Knaack S; Chasman D; Seirup M; Sridharan R; Stewart R; Thomson J; Roy S
    Genome Res; 2022 Jul; 32(7):1367-1384. PubMed ID: 35705328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets.
    Zhang S; Pyne S; Pietrzak S; Halberg S; McCalla SG; Siahpirani AF; Sridharan R; Roy S
    Nat Commun; 2023 May; 14(1):3064. PubMed ID: 37244909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal change in chromatin accessibility predicts regulators of nodulation in Medicago truncatula.
    Knaack SA; Conde D; Chakraborty S; Balmant KM; Irving TB; Maia LGS; Triozzi PM; Dervinis C; Pereira WJ; Maeda J; Schmidt HW; Ané JM; Kirst M; Roy S
    BMC Biol; 2022 Nov; 20(1):252. PubMed ID: 36352404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts.
    Nair S; Kim DS; Perricone J; Kundaje A
    Bioinformatics; 2019 Jul; 35(14):i108-i116. PubMed ID: 31510655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.
    Chasman D; Walters KB; Lopes TJ; Eisfeld AJ; Kawaoka Y; Roy S
    PLoS Comput Biol; 2016 Jul; 12(7):e1005013. PubMed ID: 27403523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling Studies of Genome-Scale Regulatory Network Evolution in Large Phylogenies with MRTLE.
    Zhang S; Knaack S; Roy S
    Methods Mol Biol; 2022; 2477():439-455. PubMed ID: 35524131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum.
    Guo L; Ji M; Ye K
    BMC Genomics; 2020 Feb; 21(1):179. PubMed ID: 32093656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs.
    Liu Q; Jiang C; Xu J; Zhao MT; Van Bortle K; Cheng X; Wang G; Chang HY; Wu JC; Snyder MP
    Circ Res; 2017 Aug; 121(4):376-391. PubMed ID: 28663367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PI3K signaling specifies proximal-distal fate by driving a developmental gene regulatory network in SOX9+ mouse lung progenitors.
    Khattar D; Fernandes S; Snowball J; Guo M; Gillen MC; Jain SS; Sinner D; Zacharias W; Swarr DT
    Elife; 2022 Aug; 11():. PubMed ID: 35976093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer's disease.
    Morabito S; Miyoshi E; Michael N; Shahin S; Martini AC; Head E; Silva J; Leavy K; Perez-Rosendahl M; Swarup V
    Nat Genet; 2021 Aug; 53(8):1143-1155. PubMed ID: 34239132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time course regulatory analysis based on paired expression and chromatin accessibility data.
    Duren Z; Chen X; Xin J; Wang Y; Wong WH
    Genome Res; 2020 Apr; 30(4):622-634. PubMed ID: 32188700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
    Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M
    Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data.
    Gong W; Koyano-Nakagawa N; Li T; Garry DJ
    BMC Bioinformatics; 2015 Mar; 16():74. PubMed ID: 25887857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pan-cancer modular regulatory network analysis to identify common and cancer-specific network components.
    Knaack SA; Siahpirani AF; Roy S
    Cancer Inform; 2014; 13(Suppl 5):69-84. PubMed ID: 25374456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tuxnet: a simple interface to process RNA sequencing data and infer gene regulatory networks.
    Spurney RJ; Van den Broeck L; Clark NM; Fisher AP; de Luis Balaguer MA; Sozzani R
    Plant J; 2020 Feb; 101(3):716-730. PubMed ID: 31571287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encounters across networks: Windows into principles of genomic regulation.
    Rothenberg EV
    Mar Genomics; 2019 Apr; 44():3-12. PubMed ID: 30661741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data integration for inferring context-specific gene regulatory networks.
    Baur B; Shin J; Zhang S; Roy S
    Curr Opin Syst Biol; 2020 Oct; 23():38-46. PubMed ID: 33225112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusion of single-cell transcriptome and DNA-binding data, for genomic network inference in cortical development.
    Bartlett T
    BMC Bioinformatics; 2021 Jun; 22(1):301. PubMed ID: 34088262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the mesendoderm gene regulatory network through multi-omic data integration.
    Jansen C; Paraiso KD; Zhou JJ; Blitz IL; Fish MB; Charney RM; Cho JS; Yasuoka Y; Sudou N; Bright AR; Wlizla M; Veenstra GJC; Taira M; Zorn AM; Mortazavi A; Cho KWY
    Cell Rep; 2022 Feb; 38(7):110364. PubMed ID: 35172134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cis-regulatory dynamics of embryonic development at single-cell resolution.
    Cusanovich DA; Reddington JP; Garfield DA; Daza RM; Aghamirzaie D; Marco-Ferreres R; Pliner HA; Christiansen L; Qiu X; Steemers FJ; Trapnell C; Shendure J; Furlong EEM
    Nature; 2018 Mar; 555(7697):538-542. PubMed ID: 29539636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.