BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35705561)

  • 1. Production of high loading insulin nanoparticles suitable for oral delivery by spray drying and freeze drying techniques.
    Guo Y; Baldelli A; Singh A; Fathordoobady F; Kitts D; Pratap-Singh A
    Sci Rep; 2022 Jun; 12(1):9949. PubMed ID: 35705561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying.
    D'Addio SM; Chan JG; Kwok PC; Benson BR; Prud'homme RK; Chan HK
    Pharm Res; 2013 Nov; 30(11):2891-901. PubMed ID: 23893019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery.
    Sinsuebpol C; Chatchawalsaisin J; Kulvanich P
    Drug Des Devel Ther; 2013; 7():861-73. PubMed ID: 24039397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles.
    Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B
    Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles.
    Soares S; Fonte P; Costa A; Andrade J; Seabra V; Ferreira D; Reis S; Sarmento B
    Int J Pharm; 2013 Nov; 456(2):370-81. PubMed ID: 24036086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery.
    Schiffter H; Condliffe J; Vonhoff S
    J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S483-500. PubMed ID: 20519207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan nanoparticles: preparation, size evolution and stability.
    Rampino A; Borgogna M; Blasi P; Bellich B; Cesàro A
    Int J Pharm; 2013 Oct; 455(1-2):219-28. PubMed ID: 23886649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants.
    Cheow WS; Ng ML; Kho K; Hadinoto K
    Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients.
    Anhorn MG; Mahler HC; Langer K
    Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying.
    Fonte P; Soares S; Costa A; Andrade JC; Seabra V; Reis S; Sarmento B
    Biomatter; 2012; 2(4):329-39. PubMed ID: 23507897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate.
    Lee MK; Kim MY; Kim S; Lee J
    J Pharm Sci; 2009 Dec; 98(12):4808-17. PubMed ID: 19475555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles.
    Bozdag S; Dillen K; Vandervoort J; Ludwig A
    J Pharm Pharmacol; 2005 Jun; 57(6):699-707. PubMed ID: 15969924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze drying of polyelectrolyte complex nanoparticles: Effect of nanoparticle composition and cryoprotectant selection.
    Umerska A; Paluch KJ; Santos-Martinez MJ; Corrigan OI; Medina C; Tajber L
    Int J Pharm; 2018 Dec; 552(1-2):27-38. PubMed ID: 30236648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking.
    Diop M; Auberval N; Viciglio A; Langlois A; Bietiger W; Mura C; Peronet C; Bekel A; Julien David D; Zhao M; Pinget M; Jeandidier N; Vauthier C; Marchioni E; Frere Y; Sigrist S
    Int J Pharm; 2015 Aug; 491(1-2):402-8. PubMed ID: 26049075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spray Freeze-Drying as an Alternative to the Ionic Gelation Method to Produce Chitosan and Alginate Nano-Particles Targeted to the Colon.
    Gamboa A; Araujo V; Caro N; Gotteland M; Abugoch L; Tapia C
    J Pharm Sci; 2015 Dec; 104(12):4373-4385. PubMed ID: 26305273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the use of tert-butanol/water cosolvent systems in production and freeze-drying of poly-ε-caprolactone nanoparticles.
    Zelenková T; Barresi AA; Fissore D
    J Pharm Sci; 2015 Jan; 104(1):178-90. PubMed ID: 25421731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets.
    Salazar J; Müller RH; Möschwitzer JP
    Eur J Pharm Sci; 2013 Jul; 49(4):565-77. PubMed ID: 23587645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of oral lyophilisates containing meloxicam nanocrystals using QbD approach.
    Iurian S; Bogdan C; Tomuță I; Szabó-Révész P; Chvatal A; Leucuța SE; Moldovan M; Ambrus R
    Eur J Pharm Sci; 2017 Jun; 104():356-365. PubMed ID: 28435075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Freeze-drying of oleanolic acid-loaded nanosuspensions].
    Zhao XL; Chen HB; Chen YJ; Yang XL
    Zhongguo Zhong Yao Za Zhi; 2007 Sep; 32(18):1874-6. PubMed ID: 18051893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders.
    Wanning S; Süverkrüp R; Lamprecht A
    Int J Pharm; 2020 Aug; 586():119564. PubMed ID: 32590097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.