These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 35705763)
1. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant. Hosseini R; Babaelahi M; Rafat E Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763 [TBL] [Abstract][Full Text] [Related]
2. Energy, Exergy, Exergoeconomic and Emergy-Based Exergoeconomic (Emergoeconomic) Analyses of a Biomass Combustion Waste Heat Recovery Organic Rankine Cycle. Effatpanah SK; Ahmadi MH; Delbari SH; Lorenzini G Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205502 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic, exergo-economic and exergo-environmental analysis of hybrid geothermal-solar power plant based on ORC cycle using emergy concept. Alibaba M; Pourdarbani R; Manesh MHK; Ochoa GV; Forero JD Heliyon; 2020 Apr; 6(4):e03758. PubMed ID: 32382674 [TBL] [Abstract][Full Text] [Related]
4. Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle. Ren J; Xu C; Qian Z; Huang W; Wang B Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920520 [TBL] [Abstract][Full Text] [Related]
5. Multiobjective optimization of a hybrid electricity generation system based on waste energy of internal combustion engine and solar system for sustainable environment. Al-Hawary SIS; Ricardo Nuñez Alvarez J; Ali A; Kumar Tripathi A; Rahardja U; Al-Kharsan IH; Romero-Parra RM; Abdulameer Marhoon H; John V; Hussian W Chemosphere; 2023 Sep; 336():139269. PubMed ID: 37339704 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic Investigation of an Integrated Solar Combined Cycle with an ORC System. Wang S; Fu Z Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267142 [TBL] [Abstract][Full Text] [Related]
7. Exergy, exergoeconomic optimization and exergoenvironmental analysis of a hybrid solar, wind, and marine energy power system: A strategy for carbon-free electrical production. Zainul R; Basem A; J Alfaker M; Sharma P; Kumar A; Al-Bahrani M; Elawady A; Abbas M; Fooladi H; Pandey S Heliyon; 2024 Aug; 10(16):e35171. PubMed ID: 39253151 [TBL] [Abstract][Full Text] [Related]
8. Comparison of two newly suggested power, refrigeration, and hydrogen production, for moving towards sustainability schemes using improved solar-powered evolutionary algorithm optimization. Hai T; Abd El-Salam NM; Kh TI; Chaturvedi R; El-Shafai W; Farhang B Chemosphere; 2023 Sep; 336():139160. PubMed ID: 37327820 [TBL] [Abstract][Full Text] [Related]
9. Exergy-Based Analysis and Optimization of an Integrated Solar Combined-Cycle Power Plant. Elmorsy L; Morosuk T; Tsatsaronis G Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286428 [TBL] [Abstract][Full Text] [Related]
10. Parametric thermodynamic analysis and economic assessment of a novel solar heliostat-molten carbonate fuel cell system for electricity and fresh water production. Sadeghi S; Askari IB Environ Sci Pollut Res Int; 2022 Jan; 29(4):5469-5495. PubMed ID: 34420171 [TBL] [Abstract][Full Text] [Related]
11. Waste to energy efficiency improvements: Integration with solar thermal energy. Mendecka B; Lombardi L; Gladysz P Waste Manag Res; 2019 Apr; 37(4):419-434. PubMed ID: 30848718 [TBL] [Abstract][Full Text] [Related]
12. A review of the techno-economic potential and environmental impact analysis through life cycle assessment of parabolic trough collector towards the contribution of sustainable energy. Saini P; Singh S; Kajal P; Dhar A; Khot N; Mohamed ME; Powar S Heliyon; 2023 Jul; 9(7):e17626. PubMed ID: 37449158 [TBL] [Abstract][Full Text] [Related]
13. Thermal design and zeotropic working fluids mixture selection optimization for a solar waste heat driven combined cooling and power system. Kheimi M; K Salamah S; A Maddah H; Mustafa Al Bakri Abdullah M Chemosphere; 2023 Sep; 335():139036. PubMed ID: 37245592 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic and Economic Analysis of an Integrated Solar Combined Cycle System. Wang S; Fu Z; Sajid S; Zhang T; Zhang G Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265404 [TBL] [Abstract][Full Text] [Related]
15. Techno-economic optimization and No Hai T; El-Shafay AS; Goyal V; Alshahri AH; Almujibah HR Chemosphere; 2023 Nov; 342():139782. PubMed ID: 37660791 [TBL] [Abstract][Full Text] [Related]
16. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Huang S; Li C; Tan T; Fu P; Wang L; Yang Y Entropy (Basel); 2018 Jan; 20(2):. PubMed ID: 33265180 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive review on various parameters that influence the performance of parabolic trough collector. Naveenkumar R; Ravichandran M; Stalin B; Ghosh A; Karthick A; Aswin LSRL; Priyanka SSH; Kumar SP; Kumar SK Environ Sci Pollut Res Int; 2021 May; 28(18):22310-22333. PubMed ID: 33754265 [TBL] [Abstract][Full Text] [Related]
18. Energy, exergy, and environmental assessment of a small-scale solar organic Rankine cycle using different organic fluids. Polanco Piñerez G; Valencia Ochoa G; Duarte-Forero J Heliyon; 2021 Sep; 7(9):e07947. PubMed ID: 34553085 [TBL] [Abstract][Full Text] [Related]
19. Exergy and Exergoeconomic Analysis of a Cogeneration Hybrid Solar Organic Rankine Cycle with Ejector. Tashtoush B; Morosuk T; Chudasama J Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286476 [TBL] [Abstract][Full Text] [Related]
20. Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization. Baigh TA; Saif MJ; Mustakim A; Nanzeeba F; Khan Y; Ehsan MM Heliyon; 2024 Aug; 10(15):e35748. PubMed ID: 39170498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]