These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35705797)

  • 1. RNABPDB: Molecular Modeling of RNA Structure-From Base Pair Analysis in Crystals to Structure Prediction.
    Mukherjee D; Maiti S; Gouda PK; Sharma R; Roy P; Bhattacharyya D
    Interdiscip Sci; 2022 Sep; 14(3):759-774. PubMed ID: 35705797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs.
    Bhattacharyya D; Halder S; Basu S; Mukherjee D; Kumar P; Bansal M
    J Comput Aided Mol Des; 2017 Feb; 31(2):219-235. PubMed ID: 28102461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
    Takahashi S; Sugimoto N
    Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of stacking overlap in nucleic acid structures: algorithm and application.
    Pingali PK; Halder S; Mukherjee D; Basu S; Banerjee R; Choudhury D; Bhattacharyya D
    J Comput Aided Mol Des; 2014 Aug; 28(8):851-67. PubMed ID: 24990628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA structure and dynamics: a base pairing perspective.
    Halder S; Bhattacharyya D
    Prog Biophys Mol Biol; 2013 Nov; 113(2):264-83. PubMed ID: 23891726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs.
    Mondal M; Halder S; Chakrabarti J; Bhattacharyya D
    Biopolymers; 2016 Apr; 105(4):212-26. PubMed ID: 26600167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures.
    Olson WK; Esguerra M; Xin Y; Lu XJ
    Methods; 2009 Mar; 47(3):177-86. PubMed ID: 19150407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of four-way junctions in RNA structures.
    Laing C; Schlick T
    J Mol Biol; 2009 Jul; 390(3):547-59. PubMed ID: 19445952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the role of non-Watson-Crick base pairs in DNA-protein recognition: Structural and energetic aspects using crystallographic database analysis and quantum chemical calculation.
    Das S; Roy S; Bhattacharyya D
    Biopolymers; 2022 Jul; 113(7):e23492. PubMed ID: 35615897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of a DNA double helix incorporating four consecutive non-Watson-Crick base-pairs.
    Chou SH; Chin KH
    J Mol Biol; 2001 Sep; 312(4):769-81. PubMed ID: 11575931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs.
    Lee JC; Gutell RR
    J Mol Biol; 2004 Dec; 344(5):1225-49. PubMed ID: 15561141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps.
    Kailasam S; Bhattacharyya D; Bansal M
    BMC Res Notes; 2014 Feb; 7():83. PubMed ID: 24502340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Database of non-canonical base pairs found in known RNA structures.
    Nagaswamy U; Voss N; Zhang Z; Fox GE
    Nucleic Acids Res; 2000 Jan; 28(1):375-6. PubMed ID: 10592279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA tertiary structure of the HIV RRE domain II containing non-Watson-Crick base pairs GG and GA: molecular modeling studies.
    Le SY; Pattabiraman N; Maizel JV
    Nucleic Acids Res; 1994 Sep; 22(19):3966-76. PubMed ID: 7937119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction.
    Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique tertiary and neighbor interactions determine conservation patterns of Cis Watson-Crick A/G base-pairs.
    Sponer J; Mokdad A; Sponer JE; Spacková N; Leszczynski J; Leontis NB
    J Mol Biol; 2003 Jul; 330(5):967-78. PubMed ID: 12860120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J; Mukherjee S; Mitra A; Bhattacharyya D
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.