These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35705797)

  • 41. Structure of a mispaired RNA double helix at 1.6-A resolution and implications for the prediction of RNA secondary structure.
    Cruse WB; Saludjian P; Biala E; Strazewski P; Prangé T; Kennard O
    Proc Natl Acad Sci U S A; 1994 May; 91(10):4160-4. PubMed ID: 7514296
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zipper-like Watson-Crick base-pairs.
    Chou SH; Chin KH
    J Mol Biol; 2001 Sep; 312(4):753-68. PubMed ID: 11575930
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isostericity and tautomerism of base pairs in nucleic acids.
    Westhof E
    FEBS Lett; 2014 Aug; 588(15):2464-9. PubMed ID: 24950426
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stacking effects on local structure in RNA: changes in the structure of tandem GA pairs when flanking GC pairs are replaced by isoG-isoC pairs.
    Chen G; Kierzek R; Yildirim I; Krugh TR; Turner DH; Kennedy SD
    J Phys Chem B; 2007 Jun; 111(24):6718-27. PubMed ID: 17411085
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of nucleobase interactions in RNA structure and dynamics.
    Bottaro S; Di Palma F; Bussi G
    Nucleic Acids Res; 2014 Dec; 42(21):13306-14. PubMed ID: 25355509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Frequency and isostericity of RNA base pairs.
    Stombaugh J; Zirbel CL; Westhof E; Leontis NB
    Nucleic Acids Res; 2009 Apr; 37(7):2294-312. PubMed ID: 19240142
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs.
    Sponer JE; Spackova N; Leszczynski J; Sponer J
    J Phys Chem B; 2005 Jun; 109(22):11399-410. PubMed ID: 16852393
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs.
    Sloma MF; Mathews DH
    PLoS Comput Biol; 2017 Nov; 13(11):e1005827. PubMed ID: 29107980
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A four-base paired genetic helix with expanded size.
    Liu H; Gao J; Lynch SR; Saito YD; Maynard L; Kool ET
    Science; 2003 Oct; 302(5646):868-71. PubMed ID: 14593180
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Non-Watson-Crick base pairs in RNA-protein recognition.
    Hermann T; Westhof E
    Chem Biol; 1999 Dec; 6(12):R335-43. PubMed ID: 10631510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural studies of DNA fragments: the G.T wobble base pair in A, B and Z DNA; the G.A base pair in B-DNA.
    Kennard O
    J Biomol Struct Dyn; 1985 Oct; 3(2):205-26. PubMed ID: 3917021
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly Stable Double-Stranded DNA Containing Sequential Silver(I)-Mediated 7-Deazaadenine/Thymine Watson-Crick Base Pairs.
    Santamaría-Díaz N; Méndez-Arriaga JM; Salas JM; Galindo MA
    Angew Chem Int Ed Engl; 2016 May; 55(21):6170-4. PubMed ID: 27005864
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Can modified DNA base pairs with chalcogen bonding expand the genetic alphabet? A combined quantum chemical and molecular dynamics simulation study.
    Sharma KD; Kathuria P; Wetmore SD; Sharma P
    Phys Chem Chem Phys; 2020 Nov; 22(41):23754-23765. PubMed ID: 33063082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proton exchange and base pair opening in a DNA triple helix.
    Powell SW; Jiang L; Russu IM
    Biochemistry; 2001 Sep; 40(37):11065-72. PubMed ID: 11551203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis.
    Brovarets OO; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(1):127-54. PubMed ID: 23383960
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural landscape of base pairs containing post-transcriptional modifications in RNA.
    Seelam PP; Sharma P; Mitra A
    RNA; 2017 Jun; 23(6):847-859. PubMed ID: 28341704
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure, stability, and dynamics of canonical and noncanonical base pairs: quantum chemical studies.
    Roy A; Panigrahi S; Bhattacharyya M; Bhattacharyya D
    J Phys Chem B; 2008 Mar; 112(12):3786-96. PubMed ID: 18318519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An RNA Molecular Switch: Intrinsic Flexibility of 23S rRNA Helices 40 and 68 5'-UAA/5'-GAN Internal Loops Studied by Molecular Dynamics Methods.
    Réblová K; Střelcová Z; Kulhánek P; Beššeová I; Mathews DH; Van Nostrand K; Yildirim I; Turner DH; Šponer J
    J Chem Theory Comput; 2010 Mar; 6(3):910-29. PubMed ID: 26613316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.