These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35705817)

  • 1. Synthesis of a monolayer fullerene network.
    Hou L; Cui X; Guan B; Wang S; Li R; Liu Y; Zhu D; Zheng J
    Nature; 2022 Jun; 606(7914):507-510. PubMed ID: 35705817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic band structure and anisotropic optical properties of bulk and monolayer fullerene networks.
    Li W; Sun M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Oct; 298():122756. PubMed ID: 37120953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization.
    Wang P; Lee W; Corbett JP; Koll WH; Vu NM; Laleyan DA; Wen Q; Wu Y; Pandey A; Gim J; Wang D; Qiu DY; Hovden R; Kira M; Heron JT; Gupta JA; Kioupakis E; Mi Z
    Adv Mater; 2022 May; 34(21):e2201387. PubMed ID: 35355349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monolayer Fullerene Networks as Photocatalysts for Overall Water Splitting.
    Peng B
    J Am Chem Soc; 2022 Nov; 144(43):19921-19931. PubMed ID: 36260929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional van der Waals C60 molecular crystal.
    Reddy CD; Gen Yu Z; Zhang YW
    Sci Rep; 2015 Jul; 5():12221. PubMed ID: 26183501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. InTeI: a novel wide-bandgap 2D material with desirable stability and highly anisotropic carrier mobility.
    Jiang S; Li J; Chen W; Yin H; Zheng GP; Wang Y
    Nanoscale; 2020 Mar; 12(10):5888-5897. PubMed ID: 32104822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic Optical, Mechanical, and Thermoelectric Properties of Two-Dimensional Fullerene Networks.
    Yu L; Xu J; Peng B; Qin G; Su G
    J Phys Chem Lett; 2022 Dec; 13(50):11622-11629. PubMed ID: 36484710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tinene: a two-dimensional Dirac material with a 72 meV band gap.
    Cai B; Zhang S; Hu Z; Hu Y; Zou Y; Zeng H
    Phys Chem Chem Phys; 2015 May; 17(19):12634-8. PubMed ID: 25904409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional CaFCl: ultra-wide bandgap, strong interlayer quantum confinement, and n-type doping.
    Ye XJ; Zhu ZX; Meng L; Liu CS
    Phys Chem Chem Phys; 2020 Aug; 22(30):17213-17220. PubMed ID: 32677646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planar Hypercoordinate Motifs in Two-Dimensional Materials.
    Wang Y; Li Y; Chen Z
    Acc Chem Res; 2020 Apr; 53(4):887-895. PubMed ID: 32223212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging properties of carbon based 2D material beyond graphene.
    Jana S; Bandyopadhyay A; Datta S; Bhattacharya D; Jana D
    J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34663760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and Strength of Monolayer Polymeric C
    Peng B
    Nano Lett; 2023 Jan; 23(2):652-658. PubMed ID: 36630566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon.
    Wang Y; Qiao M; Li Y; Chen Z
    Nanoscale Horiz; 2018 May; 3(3):327-334. PubMed ID: 32254081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P
    Lu N; Zhuo Z; Wang Y; Guo H; Fa W; Wu X; Zeng XC
    J Phys Chem Lett; 2018 Nov; 9(22):6568-6575. PubMed ID: 30380870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility.
    Dai J; Zeng XC
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7572-6. PubMed ID: 25966901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semiconducting SN
    Li F; Lv X; Gu J; Tu K; Gong J; Jin P; Chen Z
    Nanoscale; 2020 Jan; 12(1):85-92. PubMed ID: 31531446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure: an ab initio study.
    González-García A; López-Pérez W; González-Hernández R; Rodríguez JA; Milośević MV; Peeters FM
    J Phys Condens Matter; 2019 Jul; 31(26):265502. PubMed ID: 30840939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.