BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

612 related articles for article (PubMed ID: 35705880)

  • 1. Mechanisms that regulate the activities of TET proteins.
    Joshi K; Liu S; Breslin S J P; Zhang J
    Cell Mol Life Sci; 2022 Jun; 79(7):363. PubMed ID: 35705880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TET proteins and 5-methylcytosine oxidation in hematological cancers.
    Ko M; An J; Pastor WA; Koralov SB; Rajewsky K; Rao A
    Immunol Rev; 2015 Jan; 263(1):6-21. PubMed ID: 25510268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA.
    Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X
    Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connections between TET proteins and aberrant DNA modification in cancer.
    Huang Y; Rao A
    Trends Genet; 2014 Oct; 30(10):464-74. PubMed ID: 25132561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [TET proteins and epigenetic modifications in cancers].
    Ciesielski P; Jóźwiak P; Krześlak A
    Postepy Hig Med Dosw (Online); 2015 Dec; 69():1371-83. PubMed ID: 26671928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
    Ito S; Shen L; Dai Q; Wu SC; Collins LB; Swenberg JA; He C; Zhang Y
    Science; 2011 Sep; 333(6047):1300-3. PubMed ID: 21778364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells.
    Putiri EL; Tiedemann RL; Thompson JJ; Liu C; Ho T; Choi JH; Robertson KD
    Genome Biol; 2014 Jun; 15(6):R81. PubMed ID: 24958354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Function of TET Enzymes.
    Yin X; Xu Y
    Adv Exp Med Biol; 2016; 945():275-302. PubMed ID: 27826843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insight into substrate preference for TET-mediated oxidation.
    Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y
    Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma.
    Wang P; Yan Y; Yu W; Zhang H
    Cell Prolif; 2019 Jul; 52(4):e12626. PubMed ID: 31033072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TET-mediated DNA demethylation plays an important role in arsenic-induced HBE cells oxidative stress via regulating promoter methylation of OGG1 and GSTP1.
    Wang Q; Wang W; Zhang A
    Toxicol In Vitro; 2021 Apr; 72():105075. PubMed ID: 33388378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate DNA length regulates the activity of TET 5-methylcytosine dioxygenases.
    Bhattacharya C; Dey AS; Mukherji M
    Cell Biochem Funct; 2023 Aug; 41(6):704-712. PubMed ID: 37349892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MYC deregulates TET1 and TET2 expression to control global DNA (hydroxy)methylation and gene expression to maintain a neoplastic phenotype in T-ALL.
    Poole CJ; Lodh A; Choi JH; van Riggelen J
    Epigenetics Chromatin; 2019 Jul; 12(1):41. PubMed ID: 31266538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of ten-eleven translocation genes in endometrial cancers.
    Ciesielski P; Jóźwiak P; Wójcik-Krowiranda K; Forma E; Cwonda Ł; Szczepaniec S; Bieńkiewicz A; Bryś M; Krześlak A
    Tumour Biol; 2017 Mar; 39(3):1010428317695017. PubMed ID: 28349832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic Function of TET Family, 5-Methylcytosine, and 5-Hydroxymethylcytosine in Hematologic Malignancies.
    Li W; Xu L
    Oncol Res Treat; 2019; 42(6):309-318. PubMed ID: 31055566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative dynamics of 5-methylcytosine reprogramming and TET family expression during preimplantation mammalian development in mouse and sheep.
    Jafarpour F; Hosseini SM; Ostadhosseini S; Abbasi H; Dalman A; Nasr-Esfahani MH
    Theriogenology; 2017 Feb; 89():86-96. PubMed ID: 28043375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen gradients can determine epigenetic asymmetry and cellular differentiation via differential regulation of Tet activity in embryonic stem cells.
    Burr S; Caldwell A; Chong M; Beretta M; Metcalf S; Hancock M; Arno M; Balu S; Kropf VL; Mistry RK; Shah AM; Mann GE; Brewer AC
    Nucleic Acids Res; 2018 Feb; 46(3):1210-1226. PubMed ID: 29186571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency.
    Caldwell BA; Liu MY; Prasasya RD; Wang T; DeNizio JE; Leu NA; Amoh NYA; Krapp C; Lan Y; Shields EJ; Bonasio R; Lengner CJ; Kohli RM; Bartolomei MS
    Mol Cell; 2021 Feb; 81(4):859-869.e8. PubMed ID: 33352108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tet family of 5-methylcytosine dioxygenases in mammalian development.
    Zhao H; Chen T
    J Hum Genet; 2013 Jul; 58(7):421-7. PubMed ID: 23719188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine.
    Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C
    J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.