BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35705903)

  • 1. Elucidating gene expression patterns across multiple biological contexts through a large-scale investigation of transcriptomic datasets.
    Figueiredo RQ; Del Ser SD; Raschka T; Hofmann-Apitius M; Kodamullil AT; Mubeen S; Domingo-Fernández D
    BMC Bioinformatics; 2022 Jun; 23(1):231. PubMed ID: 35705903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a global investigation of transcriptomic signatures through co-expression networks and pathway knowledge for the identification of disease mechanisms.
    Figueiredo RQ; Raschka T; Kodamullil AT; Hofmann-Apitius M; Mubeen S; Domingo-Fernández D
    Nucleic Acids Res; 2021 Aug; 49(14):7939-7953. PubMed ID: 34197603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SOPHIE: Generative Neural Networks Separate Common and Specific Transcriptional Responses.
    Lee AJ; Mould DL; Crawford J; Hu D; Powers RK; Doing G; Costello JC; Hogan DA; Greene CS
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):912-927. PubMed ID: 36216026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole transcriptomic network analysis using Co-expression Differential Network Analysis (CoDiNA).
    Morselli Gysi D; de Miranda Fragoso T; Zebardast F; Bertoli W; Busskamp V; Almaas E; Nowick K
    PLoS One; 2020; 15(10):e0240523. PubMed ID: 33057419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. hCoCena: horizontal integration and analysis of transcriptomics datasets.
    Oestreich M; Holsten L; Agrawal S; Dahm K; Koch P; Jin H; Becker M; Ulas T
    Bioinformatics; 2022 Oct; 38(20):4727-4734. PubMed ID: 36018233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring the perturbed microRNA regulatory networks in cancer using hierarchical gene co-expression signatures.
    Gu J; Xuan Z
    PLoS One; 2013; 8(11):e81032. PubMed ID: 24278370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cGRNB: a web server for building combinatorial gene regulatory networks through integrated engineering of seed-matching sequence information and gene expression datasets.
    Xu H; Yu H; Tu K; Shi Q; Wei C; Li YY; Li YX
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S7. PubMed ID: 24565134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hypergraph-based method for large-scale dynamic correlation study at the transcriptomic scale.
    Kong Y; Yu T
    BMC Genomics; 2019 May; 20(1):397. PubMed ID: 31117943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of Metabolomics and Transcriptomics to Identify Gene-Metabolite Relationships Specific to Phenotype.
    Patt A; Siddiqui J; Zhang B; Mathé E
    Methods Mol Biol; 2019; 1928():441-468. PubMed ID: 30725469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study.
    Feltus FA; Ficklin SP; Gibson SM; Smith MC
    BMC Syst Biol; 2013 Jun; 7():44. PubMed ID: 23738693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential analysis of transcript expression patterns improves survival prediction in multiple cancers.
    Mandel J; Avula R; Prochownik EV
    BMC Cancer; 2020 Apr; 20(1):297. PubMed ID: 32264880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network aggregation improves gene function prediction of grapevine gene co-expression networks.
    Wong DCJ
    Plant Mol Biol; 2020 Jul; 103(4-5):425-441. PubMed ID: 32266646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles.
    Prieto C; Risueño A; Fontanillo C; De las Rivas J
    PLoS One; 2008; 3(12):e3911. PubMed ID: 19081792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path2enet: generation of human pathway-derived networks in an expression specific context.
    Droste C; De Las Rivas J
    BMC Genomics; 2016 Oct; 17(Suppl 8):731. PubMed ID: 27801297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting subnetwork-level dynamic correlations.
    Yan Y; Qiu S; Jin Z; Gong S; Bai Y; Lu J; Yu T
    Bioinformatics; 2017 Jan; 33(2):256-265. PubMed ID: 27667792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-expression networks for plant biology: why and how.
    Rao X; Dixon RA
    Acta Biochim Biophys Sin (Shanghai); 2019 Sep; 51(10):981-988. PubMed ID: 31436787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating transcriptome-wide sex dimorphism by multi-level analysis of single-cell RNA sequencing data in ten mouse cell types.
    Lu T; Mar JC
    Biol Sex Differ; 2020 Nov; 11(1):61. PubMed ID: 33153500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KNeMAP: a network mapping approach for knowledge-driven comparison of transcriptomic profiles.
    Pavel A; Del Giudice G; Fratello M; Ghemtio L; Di Lieto A; Yli-Kauhaluoma J; Xhaard H; Federico A; Serra A; Greco D
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37225400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. corto: a lightweight R package for gene network inference and master regulator analysis.
    Mercatelli D; Lopez-Garcia G; Giorgi FM
    Bioinformatics; 2020 Jun; 36(12):3916-3917. PubMed ID: 32232425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational approach to identify cellular heterogeneity and tissue-specific gene regulatory networks.
    Jambusaria A; Klomp J; Hong Z; Rafii S; Dai Y; Malik AB; Rehman J
    BMC Bioinformatics; 2018 Jun; 19(1):217. PubMed ID: 29940845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.