These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35706185)

  • 1. Geometric bounds on the power of adiabatic thermal machines.
    Eglinton J; Brandner K
    Phys Rev E; 2022 May; 105(5):L052102. PubMed ID: 35706185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Bounds on Fluctuations in Continuous Thermal Machines.
    Saryal S; Gerry M; Khait I; Segal D; Agarwalla BK
    Phys Rev Lett; 2021 Nov; 127(19):190603. PubMed ID: 34797144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance bound for quantum absorption refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042131. PubMed ID: 23679395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entanglement enhances cooling in microscopic quantum refrigerators.
    Brunner N; Huber M; Linden N; Popescu S; Silva R; Skrzypczyk P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032115. PubMed ID: 24730798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Carnot thermal machines reexamined: Definition of efficiency and the effects of strong coupling.
    Liu J; Jung KA
    Phys Rev E; 2024 Apr; 109(4-1):044118. PubMed ID: 38755899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum heat engines and refrigerators: continuous devices.
    Kosloff R; Levy A
    Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum efficiency of absorption refrigerators at arbitrary cooling power.
    Ye Z; Holubec V
    Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling thermodynamics of a quantum heat engine with modulated amplitude drivings.
    Giri SK; Goswami HP
    Phys Rev E; 2022 Aug; 106(2-1):024131. PubMed ID: 36109996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal universal quantum heat machine.
    Gelbwaser-Klimovsky D; Alicki R; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012140. PubMed ID: 23410316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential.
    Xiao Y; Li K; He J; Wang J
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal bounds on cooling power and cooling efficiency for autonomous absorption refrigerators.
    Mohanta S; Saryal S; Agarwalla BK
    Phys Rev E; 2022 Mar; 105(3-1):034127. PubMed ID: 35428079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
    Gelbwaser-Klimovsky D; Kurizki G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines.
    Pietzonka P; Seifert U
    Phys Rev Lett; 2018 May; 120(19):190602. PubMed ID: 29799237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal performance of generalized heat engines with finite-size baths of arbitrary multiple conserved quantities beyond independent-and-identical-distribution scaling.
    Ito K; Hayashi M
    Phys Rev E; 2018 Jan; 97(1-1):012129. PubMed ID: 29448373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiencies and coefficients of performance of heat engines, refrigerators, and heat pumps with friction: a universal limiting behavior.
    Bizarro JP; Rodrigues P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051109. PubMed ID: 23214740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Most efficient quantum thermoelectric at finite power output.
    Whitney RS
    Phys Rev Lett; 2014 Apr; 112(13):130601. PubMed ID: 24745399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response.
    Brandner K; Bauer M; Seifert U
    Phys Rev Lett; 2017 Oct; 119(17):170602. PubMed ID: 29219425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation.
    Hu Y; Wu F; Ma Y; He J; Wang J; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062115. PubMed ID: 24483394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.