These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35706235)

  • 1. Lattice Boltzmann framework for accurate NMR simulation in porous media.
    Rybin I; Shikhov I; Arns CH
    Phys Rev E; 2022 May; 105(5-2):055304. PubMed ID: 35706235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Resonance Characterization of Porous Media Using Diffusion through Internal Magnetic Fields.
    Cho HJ; Sigmund EE; Song Y
    Materials (Basel); 2012 Apr; 5(4):590-616. PubMed ID: 28816998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of MR flow imaging by the lattice Boltzmann method and Bloch equation.
    Jurczuk K; Kretowski M; Bellanger JJ; Eliat PA; Saint-Jalmes H; Bézy-Wendling J
    Magn Reson Imaging; 2013 Sep; 31(7):1163-73. PubMed ID: 23711475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random-walk technique for simulating NMR measurements and 2D NMR maps of porous media with relaxing and permeable boundaries.
    Toumelin E; Torres-Verdín C; Sun B; Dunn KJ
    J Magn Reson; 2007 Sep; 188(1):83-96. PubMed ID: 17632022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement.
    Korb JP
    Prog Nucl Magn Reson Spectrosc; 2018 Feb; 104():12-55. PubMed ID: 29405980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of NMR simulations of porous media derived from analytical and voxelized representations.
    Jin G; Torres-Verdín C; Toumelin E
    J Magn Reson; 2009 Oct; 200(2):313-20. PubMed ID: 19665909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel NMR techniques for porous media research.
    Song YQ
    Magn Reson Imaging; 2003; 21(3-4):207-11. PubMed ID: 12850709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results.
    Kurz FT; Buschle LR; Kampf T; Zhang K; Schlemmer HP; Heiland S; Bendszus M; Ziener CH
    J Magn Reson; 2016 Dec; 273():83-97. PubMed ID: 27794269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient simulation of magnetic resonance imaging with Bloch-Torrey equations using intra-voxel magnetization gradients.
    Jochimsen TH; Schäfer A; Bammer R; Moseley ME
    J Magn Reson; 2006 May; 180(1):29-38. PubMed ID: 16434221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parametric finite element solution of the generalised Bloch-Torrey equation for arbitrary domains.
    Beltrachini L; Taylor ZA; Frangi AF
    J Magn Reson; 2015 Oct; 259():126-34. PubMed ID: 26334960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR Relaxation Measurements on Complex Samples Based on Real-Time Pure Shift Techniques.
    Lin X; Zhan H; Li H; Huang Y; Chen Z
    Molecules; 2020 Jan; 25(3):. PubMed ID: 31979172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.
    Awojoyogbe BO; Dada MO; Onwu SO; Ige TA; Akinwande NI
    J Med Syst; 2016 Apr; 40(4):106. PubMed ID: 26892456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional Calculus Models of Magnetic Resonance Phenomena: Relaxation and Diffusion.
    Magin RL; Hall MG; Karaman MM; Vegh V
    Crit Rev Biomed Eng; 2020; 48(5):285-326. PubMed ID: 33639049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit calculation of nuclear-magnetic-resonance relaxation rates in small pores to elucidate molecular-scale fluid dynamics.
    Faux DA; McDonald PJ
    Phys Rev E; 2017 Mar; 95(3-1):033117. PubMed ID: 28415374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of local magnetization in the eigenbasis of the Bloch-Torrey operator.
    Herberthson M; Özarslan E; Knutsson H; Westin CF
    J Chem Phys; 2017 Mar; 146(12):124201. PubMed ID: 28388135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the Interpretation of Frequency-Dependent Nuclear Magnetic Resonance Measurements from Porous Material.
    Faux D; Kogon R; Bortolotti V; McDonald P
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31614973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Parallel Coupled Lattice Boltzmann-Volume of Fluid Framework for Modeling Porous Media Evolution.
    Alihussein H; Geier M; Krafczyk M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.