BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 35706337)

  • 1. Impact of Circular, Waste-Heat Reuse Pathways on PM
    Lal RM; Tibrewal K; Venkataraman C; Tong K; Fang A; Ma Q; Wang S; Kaiser J; Ramaswami A; Russell AG
    Environ Sci Technol; 2022 Jul; 56(13):9773-9783. PubMed ID: 35706337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source influence on emission pathways and ambient PM
    Venkataraman C; Brauer M; Tibrewal K; Sadavarte P; Ma Q; Cohen A; Chaliyakunnel S; Frostad J; Klimont Z; Martin RV; Millet DB; Philip S; Walker K; Wang S
    Atmos Chem Phys; 2018 Jun; 18(11):8017-8039. PubMed ID: 33679902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of air pollution control policies on future PM
    Cai S; Ma Q; Wang S; Zhao B; Brauer M; Cohen A; Martin RV; Zhang Q; Li Q; Wang Y; Hao J; Frostad J; Forouzanfar MH; Burnett RT
    J Environ Manage; 2018 Dec; 227():124-133. PubMed ID: 30172931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of PM
    Nagar PK; Singh D; Sharma M; Kumar A; Aneja VP; George MP; Agarwal N; Shukla SP
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25179-25189. PubMed ID: 28924742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei region in China.
    Liu J; Kiesewetter G; Klimont Z; Cofala J; Heyes C; Schöpp W; Zhu T; Cao G; Gomez Sanabria A; Sander R; Guo F; Zhang Q; Nguyen B; Bertok I; Rafaj P; Amann M
    Environ Int; 2019 Apr; 125():236-244. PubMed ID: 30731373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China.
    Liu Y; Zhang Y; Li C; Bai Y; Zhang D; Xue C; Liu G
    Environ Pollut; 2018 Sep; 240():661-669. PubMed ID: 29775943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urban pollution in the Danube and Western Balkans regions: The impact of major PM
    Belis CA; Pisoni E; Degraeuwe B; Peduzzi E; Thunis P; Monforti-Ferrario F; Guizzardi D
    Environ Int; 2019 Dec; 133(Pt A):105158. PubMed ID: 31622907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential Uses of Coal Methane in China and Associated Benefits for Air Quality, Health, and Climate.
    Zhang M; Jordaan SM; Peng W; Zhang Q; Miller SM
    Environ Sci Technol; 2020 Oct; 54(19):12447-12455. PubMed ID: 32845142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia.
    Qiu X; Duan L; Cai S; Yu Q; Wang S; Chai F; Gao J; Li Y; Xu Z
    J Environ Sci (China); 2017 Jul; 57():383-390. PubMed ID: 28647259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly-resolved spatial-temporal variations of air pollutants from Chinese industrial boilers.
    Tong Y; Gao J; Wang K; Jing H; Wang C; Zhang X; Liu J; Yue T; Wang X; Xing Y
    Environ Pollut; 2021 Nov; 289():117931. PubMed ID: 34426180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inharmonious mechanism of CO
    Wang L; Yu Y; Huang K; Zhang Z; Li X
    J Environ Manage; 2020 Nov; 274():111236. PubMed ID: 32827870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacing the greater evil: Can legalizing decentralized waste burning in improved devices reduce waste burning emissions for improved air quality?
    Chaudhary P; Singh R; Shabin M; Sharma A; Bhatt S; Sinha V; Sinha B
    Environ Pollut; 2022 Oct; 311():119897. PubMed ID: 35963389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Will open waste burning become India's largest air pollution source?
    Sharma G; Annadate S; Sinha B
    Environ Pollut; 2022 Jan; 292(Pt A):118310. PubMed ID: 34626708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine particles from village air in northern China in winter: Large contribution of primary organic aerosols from residential solid fuel burning.
    Zhang Y; Shi Z; Wang Y; Liu L; Zhang J; Li J; Xia Y; Ding X; Liu D; Kong S; Niu H; Fu P; Zhang X; Li W
    Environ Pollut; 2021 Mar; 272():116420. PubMed ID: 33433345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinated effects of energy transition on air pollution mitigation and CO
    Yuan R; Ma Q; Zhang Q; Yuan X; Wang Q; Luo C
    Sci Total Environ; 2022 Oct; 841():156482. PubMed ID: 35671858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Emissions and Future Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030.
    Tong D; Zhang Q; Liu F; Geng G; Zheng Y; Xue T; Hong C; Wu R; Qin Y; Zhao H; Yan L; He K
    Environ Sci Technol; 2018 Nov; 52(21):12905-12914. PubMed ID: 30249091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Health and air quality benefits of policies to reduce coal-fired power plant emissions: a case study in North Carolina.
    Li YR; Gibson JM
    Environ Sci Technol; 2014 Sep; 48(17):10019-27. PubMed ID: 25046689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of rural residential coal combustion on air pollution in Shandong, China.
    Zhou Y; Zi T; Lang J; Huang D; Wei P; Chen D; Cheng S
    Chemosphere; 2020 Dec; 260():127517. PubMed ID: 32758768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings.
    Petersdorff C; Boermans T; Harnisch J
    Environ Sci Pollut Res Int; 2006 Sep; 13(5):350-8. PubMed ID: 17067030
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.