These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 35706354)

  • 1. Iron uptake, signaling, and sensing in plants.
    Liang G
    Plant Commun; 2022 Sep; 3(5):100349. PubMed ID: 35706354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic Regulation of Iron Acquisition by Arabidopsis in Environments with Heterogeneous Iron Distributions.
    Tabata R; Kamiya T; Imoto S; Tamura H; Ikuta K; Tabata M; Hirayama T; Tsukagoshi H; Tanoi K; Suzuki T; Hachiya T; Sakakibara H
    Plant Cell Physiol; 2022 Jun; 63(6):842-854. PubMed ID: 35445268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Iron Retrograde Signaling Mechanisms and Uptake Regulation in Photosynthetic Organisms.
    Pagani MA; Gomez-Casati DF
    Methods Mol Biol; 2023; 2665():121-145. PubMed ID: 37166598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms governing Arabidopsis iron uptake.
    Brumbarova T; Bauer P; Ivanov R
    Trends Plant Sci; 2015 Feb; 20(2):124-33. PubMed ID: 25499025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All together now: regulation of the iron deficiency response.
    Riaz N; Guerinot ML
    J Exp Bot; 2021 Mar; 72(6):2045-2055. PubMed ID: 33449088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots.
    Stein RJ; Waters BM
    J Exp Bot; 2012 Jan; 63(2):1039-55. PubMed ID: 22039296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Getting a sense for signals: regulation of the plant iron deficiency response.
    Hindt MN; Guerinot ML
    Biochim Biophys Acta; 2012 Sep; 1823(9):1521-30. PubMed ID: 22483849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms.
    Zhou C; Guo J; Zhu L; Xiao X; Xie Y; Zhu J; Ma Z; Wang J
    Plant Physiol Biochem; 2016 Aug; 105():162-173. PubMed ID: 27105423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interconnection of iron and osmotic stress signalling in plants: is FIT a regulatory hub to cross-connect abscisic acid responses?
    Kanwar P; Baby D; Bauer P
    Plant Biol (Stuttg); 2021 May; 23 Suppl 1():31-38. PubMed ID: 33772999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basic helix-loop-helix transcription factor, bHLH11 functions in the iron-uptake system in Arabidopsis thaliana.
    Tanabe N; Noshi M; Mori D; Nozawa K; Tamoi M; Shigeoka S
    J Plant Res; 2019 Jan; 132(1):93-105. PubMed ID: 30417276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quick journey into the diversity of iron uptake strategies in photosynthetic organisms.
    Martín-Barranco A; Thomine S; Vert G; Zelazny E
    Plant Signal Behav; 2021 Nov; 16(11):1975088. PubMed ID: 34514930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).
    Andrés-Bordería A; Andrés F; Garcia-Molina A; Perea-García A; Domingo C; Puig S; Peñarrubia L
    Plant Mol Biol; 2017 Sep; 95(1-2):17-32. PubMed ID: 28631167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level.
    Aksoy E; Jeong IS; Koiwa H
    Plant Physiol; 2013 Jan; 161(1):330-45. PubMed ID: 23144187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures.
    Schwarz B; Bauer P
    J Exp Bot; 2020 Mar; 71(5):1694-1705. PubMed ID: 31922570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein.
    Naranjo-Arcos MA; Maurer F; Meiser J; Pateyron S; Fink-Straube C; Bauer P
    Sci Rep; 2017 Sep; 7(1):10911. PubMed ID: 28883478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The zinc homeostasis network of land plants.
    Sinclair SA; Krämer U
    Biochim Biophys Acta; 2012 Sep; 1823(9):1553-67. PubMed ID: 22626733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis.
    Bernal M; Casero D; Singh V; Wilson GT; Grande A; Yang H; Dodani SC; Pellegrini M; Huijser P; Connolly EL; Merchant SS; Krämer U
    Plant Cell; 2012 Feb; 24(2):738-61. PubMed ID: 22374396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance.
    Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC
    New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana.
    Waters BM; McInturf SA; Stein RJ
    J Exp Bot; 2012 Oct; 63(16):5903-18. PubMed ID: 22962679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Availability and Homeostasis in Plants: A Review of Responses, Adaptive Mechanisms, and Signaling.
    Kermeur N; Pédrot M; Cabello-Hurtado F
    Methods Mol Biol; 2023; 2642():49-81. PubMed ID: 36944872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.