These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 35707072)

  • 1. A multivariate Poisson regression model for count data.
    Muñoz-Pichardo JM; Pino-Mejías R; García-Heras J; Ruiz-Muñoz F; Luz González-Regalado M
    J Appl Stat; 2021; 48(13-15):2525-2541. PubMed ID: 35707072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new multivariate zero-adjusted Poisson model with applications to biomedicine.
    Liu Y; Tian GL; Tang ML; Yuen KC
    Biom J; 2019 Nov; 61(6):1340-1370. PubMed ID: 29799138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantile modeling through multivariate log-normal/independent linear regression models with application to newborn data.
    Morán-Vásquez RA; Mazo-Lopera MA; Ferrari SLP
    Biom J; 2021 Aug; 63(6):1290-1308. PubMed ID: 33949715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collision prediction models using multivariate Poisson-lognormal regression.
    El-Basyouny K; Sayed T
    Accid Anal Prev; 2009 Jul; 41(4):820-8. PubMed ID: 19540972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Multivariate Distributions for Count Data Derived from the Poisson Distribution.
    Inouye D; Yang E; Allen G; Ravikumar P
    Wiley Interdiscip Rev Comput Stat; 2017; 9(3):. PubMed ID: 28983398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semi-analytical solution to the maximum-likelihood fit of Poisson data to a linear model using the Cash statistic.
    Bonamente M; Spence D
    J Appl Stat; 2022; 49(3):522-552. PubMed ID: 35706762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new bivariate Poisson distribution via conditional specification: properties and applications.
    Ghosh I; Marques F; Chakraborty S
    J Appl Stat; 2021; 48(16):3025-3047. PubMed ID: 35707254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.
    Francis RA; Geedipally SR; Guikema SD; Dhavala SS; Lord D; LaRocca S
    Risk Anal; 2012 Jan; 32(1):167-83. PubMed ID: 21801191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter.
    Lord D
    Accid Anal Prev; 2006 Jul; 38(4):751-66. PubMed ID: 16545328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance in population models for count data, part I: maximum likelihood approximations.
    Plan EL; Maloney A; Trocóniz IF; Karlsson MO
    J Pharmacokinet Pharmacodyn; 2009 Aug; 36(4):353-66. PubMed ID: 19653080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the 1990 Hong Kong legislation for restriction on sulfur content in fuel.
    Wong CM; Rabl A; Thach TQ; Chau YK; Chan KP; Cowling BJ; Lai HK; Lam TH; McGhee SM; Anderson HR; Hedley AJ
    Res Rep Health Eff Inst; 2012 Aug; (170):5-91. PubMed ID: 23316618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches for dealing with various sources of overdispersion in modeling count data: Scale adjustment versus modeling.
    Payne EH; Hardin JW; Egede LE; Ramakrishnan V; Selassie A; Gebregziabher M
    Stat Methods Med Res; 2017 Aug; 26(4):1802-1823. PubMed ID: 26031359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameter estimation and goodness-of-fit in log binomial regression.
    Blizzard L; Hosmer DW
    Biom J; 2006 Feb; 48(1):5-22. PubMed ID: 16544809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust REML estimation for k-component Poisson mixture with random effects: application to the epilepsy seizure count data and urinary tract infections data.
    Yu D; Yau KK
    Stat Med; 2013 Jun; 32(14):2479-99. PubMed ID: 22961936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the Hyper-Poisson Generalized Linear Model for Analyzing Motor Vehicle Crashes.
    Khazraee SH; Sáez-Castillo AJ; Geedipally SR; Lord D
    Risk Anal; 2015 May; 35(5):919-30. PubMed ID: 25385093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solutions to problems of nonexistence of parameter estimates and sparse data bias in Poisson regression.
    Joshi A; Geroldinger A; Jiricka L; Senchaudhuri P; Corcoran C; Heinze G
    Stat Methods Med Res; 2022 Feb; 31(2):253-266. PubMed ID: 34931909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts.
    Majumdar A; Gries C
    Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of self-reported emotional experiences: a mixed-effects Poisson factor model.
    Böckenholt U; Kamakura WA; Wedel M
    Br J Math Stat Psychol; 2003 Nov; 56(Pt 2):215-29. PubMed ID: 14633333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odds ratios from logistic, geometric, Poisson, and negative binomial regression models.
    Sroka CJ; Nagaraja HN
    BMC Med Res Methodol; 2018 Oct; 18(1):112. PubMed ID: 30342488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A methodology to design heuristics for model selection based on the characteristics of data: Application to investigate when the Negative Binomial Lindley (NB-L) is preferred over the Negative Binomial (NB).
    Shirazi M; Dhavala SS; Lord D; Geedipally SR
    Accid Anal Prev; 2017 Oct; 107():186-194. PubMed ID: 28886410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.