These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 35707215)
1. Bayesian generalizations of the integer-valued autoregressive model. C Marques F P; Graziadei H; Lopes HF J Appl Stat; 2022; 49(2):336-356. PubMed ID: 35707215 [TBL] [Abstract][Full Text] [Related]
2. A first-order binomial-mixed Poisson integer-valued autoregressive model with serially dependent innovations. Chen Z; Dassios A; Tzougas G J Appl Stat; 2023; 50(2):352-369. PubMed ID: 36698548 [TBL] [Abstract][Full Text] [Related]
3. Generalized Poisson integer-valued autoregressive processes with structural changes. Zhang C; Wang D; Yang K; Li H; Wang X J Appl Stat; 2022; 49(11):2717-2739. PubMed ID: 35909669 [TBL] [Abstract][Full Text] [Related]
4. A New Extension of Thinning-Based Integer-Valued Autoregressive Models for Count Data. Liu Z; Zhu F Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33396549 [TBL] [Abstract][Full Text] [Related]
5. A New First-Order Integer-Valued Autoregressive Model with Bell Innovations. Huang J; Zhu F Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34199717 [TBL] [Abstract][Full Text] [Related]
6. Modeling Medical Data by Flexible Integer-Valued AR(1) Process with Zero-and-One-Inflated Geometric Innovations. Mohammadi Z; Sajjadnia Z; Sharafi M; Mamode Khan N Iran J Sci Technol Trans A Sci; 2022; 46(3):891-906. PubMed ID: 35645547 [TBL] [Abstract][Full Text] [Related]
7. Prior Sensitivity Analysis in a Semi-Parametric Integer-Valued Time Series Model. Graziadei H; Lijoi A; Lopes HF; Marques F PC; Prünster I Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285844 [TBL] [Abstract][Full Text] [Related]
8. Statistical modelling of COVID-19 and drug data via an INAR(1) process with a recent thinning operator and cosine Poisson innovations. Mohammadi Z; Bakouch HS; Sharafi M Int J Biostat; 2023 Nov; 19(2):473-488. PubMed ID: 36302373 [TBL] [Abstract][Full Text] [Related]
9. The balanced discrete Burr-Hatke model and mixing INAR(1) process: properties, estimation, forecasting and COVID-19 applications. Baladezaei SMH; Deiri E; Jamkhaneh EB J Appl Stat; 2024; 51(7):1227-1250. PubMed ID: 38835822 [TBL] [Abstract][Full Text] [Related]
10. Change-point analysis through integer-valued autoregressive process with application to some COVID-19 data. Chattopadhyay S; Maiti R; Das S; Biswas A Stat Neerl; 2022 Feb; 76(1):4-34. PubMed ID: 34226773 [TBL] [Abstract][Full Text] [Related]
11. The balanced discrete triplet Lindley model and its INAR(1) extension: properties and COVID-19 applications. Shirozhan M; Mamode Khan NA; Kokonendji CC Int J Biostat; 2023 Nov; 19(2):489-516. PubMed ID: 36420542 [TBL] [Abstract][Full Text] [Related]
12. Time series count data models: an empirical application to traffic accidents. Quddus MA Accid Anal Prev; 2008 Sep; 40(5):1732-41. PubMed ID: 18760102 [TBL] [Abstract][Full Text] [Related]
13. Re-visiting the COVID-19 analysis using the class of high ordered integer-valued time series models with harmonic features. Khan NM; Soobhug AD; Youssef N; Fedally S; Nadarajah S; Heetun Z Healthc Anal (N Y); 2022 Nov; 2():100086. PubMed ID: 37520619 [TBL] [Abstract][Full Text] [Related]
14. Modelling and monitoring of INAR(1) process with geometrically inflated Poisson innovations. Li C; Zhang H; Wang D J Appl Stat; 2022; 49(7):1821-1847. PubMed ID: 35707552 [TBL] [Abstract][Full Text] [Related]
16. Comparison of estimation and prediction methods for a zero-inflated geometric INAR(1) process with random coefficients. Nasirzadeh R; Bakouch H J Appl Stat; 2024; 51(12):2457-2480. PubMed ID: 39267715 [TBL] [Abstract][Full Text] [Related]
17. Re-analyzing the SARS-CoV-2 series using an extended integer-valued time series models: A situational assessment of the COVID-19 in Mauritius. Soobhug AD; Jowaheer H; Mamode Khan N; Reetoo N; Meethoo-Badulla K; Musango L; Kokonendji CC; Chutoo A; Aries N PLoS One; 2022; 17(2):e0263515. PubMed ID: 35134059 [TBL] [Abstract][Full Text] [Related]
18. A new approach to model the counts of earthquakes: INARPQX(1) process. Altun E; Bhati D; Khan NM SN Appl Sci; 2021; 3(2):274. PubMed ID: 33554048 [TBL] [Abstract][Full Text] [Related]
19. Modeling digital camera monitoring count data with intermittent zeros for short-term prediction. Afrifa-Yamoah E; Mueller UA Heliyon; 2022 Jan; 8(1):e08774. PubMed ID: 35106388 [TBL] [Abstract][Full Text] [Related]
20. Statistical Inference for Periodic Self-Exciting Threshold Integer-Valued Autoregressive Processes. Liu C; Cheng J; Wang D Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34204491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]