BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35707612)

  • 21. Genetic Incorporation of the Favorable Alleles for Three Genes Associated With Spikelet Development in Wheat.
    Zhang X; Qiao L; Li X; Yang Z; Liu C; Guo H; Zheng J; Zhang S; Chang L; Chen F; Jia J; Yan L; Chang Z
    Front Plant Sci; 2022; 13():892642. PubMed ID: 35592560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling the trade-off between spikelet number and grain filling: the hierarchy of starch synthesis in spikelets of rice panicle in relation to hormone dynamics.
    Panigrahi R; Kariali E; Panda BB; Lafarge T; Mohapatra PK
    Funct Plant Biol; 2019 Jun; 46(6):507-523. PubMed ID: 30961785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corrigendum to: Controlling the trade-off between spikelet number and grain filling: the hierarchy of starch synthesis in spikelets of rice panicle in relation to hormone dynamics.
    Panigrahi R; Kariali E; Panda BB; Lafarge T; Mohapatra PK
    Funct Plant Biol; 2019 Jun; 46(6):595. PubMed ID: 32172735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detecting spikes of wheat plants using neural networks with Laws texture energy.
    Qiongyan L; Cai J; Berger B; Okamoto M; Miklavcic SJ
    Plant Methods; 2017; 13():83. PubMed ID: 29046709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small and Oriented Wheat Spike Detection at the Filling and Maturity Stages Based on WheatNet.
    Zhao J; Cai Y; Wang S; Yan J; Qiu X; Yao X; Tian Y; Zhu Y; Cao W; Zhang X
    Plant Phenomics; 2023; 5():0109. PubMed ID: 37915995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wheat Spike Detection and Counting in the Field Based on SpikeRetinaNet.
    Wen C; Wu J; Chen H; Su H; Chen X; Li Z; Yang C
    Front Plant Sci; 2022; 13():821717. PubMed ID: 35310650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Association Analysis of Grain-setting Rates in Apical and Basal Spikelets in Bread Wheat (Triticum aestivum L.).
    Guo J; Zhang Y; Shi W; Zhang B; Zhang J; Xu Y; Cheng X; Cheng K; Zhang X; Hao C; Cheng S
    Front Plant Sci; 2015; 6():1029. PubMed ID: 26635852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Low-Temperature Stress during the Anther Differentiation Period on Winter Wheat Photosynthetic Performance and Spike-Setting Characteristics.
    Zhang Y; Liu L; Chen X; Li J
    Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic and transcriptomic dissection of an artificially induced paired spikelets mutant of wheat (Triticum aestivum L.).
    Zhang J; Tang Y; Pu X; Qiu X; Wang J; Li T; Yang Z; Zhou Y; Chang Y; Liang J; Zhang H; Deng G; Long H
    Theor Appl Genet; 2022 Jul; 135(7):2543-2554. PubMed ID: 35695919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active learning with point supervision for cost-effective panicle detection in cereal crops.
    Chandra AL; Desai SV; Balasubramanian VN; Ninomiya S; Guo W
    Plant Methods; 2020; 16():34. PubMed ID: 32161624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wheat-Net: An Automatic Dense Wheat Spike Segmentation Method Based on an Optimized Hybrid Task Cascade Model.
    Zhang J; Min A; Steffenson BJ; Su WH; Hirsch CD; Anderson J; Wei J; Ma Q; Yang C
    Front Plant Sci; 2022; 13():834938. PubMed ID: 35222491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CropQuant-Air: an AI-powered system to enable phenotypic analysis of yield- and performance-related traits using wheat canopy imagery collected by low-cost drones.
    Chen J; Zhou J; Li Q; Li H; Xia Y; Jackson R; Sun G; Zhou G; Deakin G; Jiang D; Zhou J
    Front Plant Sci; 2023; 14():1219983. PubMed ID: 37404534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Occlusion Robust Wheat Ear Counting Algorithm Based on Deep Learning.
    Wang Y; Qin Y; Cui J
    Front Plant Sci; 2021; 12():645899. PubMed ID: 34177976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wheat Ear Recognition Based on RetinaNet and Transfer Learning.
    Li J; Li C; Fei S; Ma C; Chen W; Ding F; Wang Y; Li Y; Shi J; Xiao Z
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Different Machine Learning Algorithms for the Prediction of the Wheat Grain Filling Stage Using RGB Images.
    Song Y; Sun Z; Zhang R; Min H; Li Q; Cai J; Wang X; Zhou Q; Jiang D
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Heterozygous Genotype-Dependent Branched-Spike Wheat and the Potential Genetic Mechanism Revealed by Transcriptome Sequencing.
    Ma T; Li L; Zhao Y; Hua C; Sun Z; Li T
    Biology (Basel); 2021 May; 10(5):. PubMed ID: 34068944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wheat
    Li C; Lin H; Chen A; Lau M; Jernstedt J; Dubcovsky J
    Development; 2019 Jul; 146(14):. PubMed ID: 31337701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time determination of flowering period for field wheat based on improved YOLOv5s model.
    Song X; Liu L; Wang C; Zhang W; Li Y; Zhu J; Liu P; Li X
    Front Plant Sci; 2022; 13():1025663. PubMed ID: 36714714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iTRAQ-based proteome profile analysis of superior and inferior Spikelets at early grain filling stage in japonica Rice.
    You C; Chen L; He H; Wu L; Wang S; Ding Y; Ma C
    BMC Plant Biol; 2017 Jun; 17(1):100. PubMed ID: 28592253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.