BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 35707926)

  • 41. Green techniques in comparison to conventional ones in the extraction of Amaryllidaceae alkaloids: Best solvents selection and parameters optimization.
    Takla SS; Shawky E; Hammoda HM; Darwish FA
    J Chromatogr A; 2018 Sep; 1567():99-110. PubMed ID: 30033169
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extraction of Bioactive Components from
    Tsvetov N; Pasichnik E; Korovkina A; Gosteva A
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807478
    [No Abstract]   [Full Text] [Related]  

  • 43. Green Extraction of Antioxidant Polyphenols from Green Tea (
    Luo Q; Zhang JR; Li HB; Wu DT; Geng F; Corke H; Wei XL; Gan RY
    Antioxidants (Basel); 2020 Aug; 9(9):. PubMed ID: 32854245
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microwave-assisted deep eutectic solvent extraction of phenolic antioxidants from onion (
    Pal CBT; Jadeja GC
    J Food Sci Technol; 2019 Sep; 56(9):4211-4223. PubMed ID: 31477992
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization.
    Bener M; Şen FB; Önem AN; Bekdeşer B; Çelik SE; Lalikoglu M; Aşçı YS; Capanoglu E; Apak R
    Food Chem; 2022 Aug; 385():132633. PubMed ID: 35279500
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Natural deep eutectic solvents as new green solvents to extract anthraquinones from
    Wu YC; Wu P; Li YB; Liu TC; Zhang L; Zhou YH
    RSC Adv; 2018 Apr; 8(27):15069-15077. PubMed ID: 35541349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimization of the extraction process of flavonoids from Trollius ledebouri with natural deep eutectic solvents.
    Zuo J; Ma P; Geng S; Kong Y; Li X; Fan Z; Zhang Y; Dong A; Zhou Q
    J Sep Sci; 2022 Feb; 45(3):717-727. PubMed ID: 34845820
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrasound-Assisted Extraction of Flavonoids from
    Xue H; Li J; Wang G; Zuo W; Zeng Y; Liu L
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144529
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly clean recovery of natural antioxidants from lemon peels: Lactic acid-based automatic solvent extraction.
    Toprakçı G; Toprakçı İ; Şahin S
    Phytochem Anal; 2022 Jun; 33(4):554-563. PubMed ID: 35112419
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Potential application of green extracts rich in phenolics for innovative functional foods: natural deep eutectic solvents as media for isolation of biocompounds from berries.
    Lazović MČ; Jović MD; Petrović M; Dimkić IZ; Gašić UM; Milojković Opsenica DM; Ristivojević PM; Trifković JĐ
    Food Funct; 2024 Apr; 15(8):4122-4139. PubMed ID: 38573168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrasound-assisted deep eutectic solvent extraction of bioactive compounds from persimmon calyx.
    Kutlu N; Kamiloğlu A; Abca TE; Yilmaz Ö
    J Food Sci; 2024 Jan; 89(1):294-305. PubMed ID: 38010748
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Green extraction of phenolics and flavonoids from black mulberry fruit using natural deep eutectic solvents: optimization and surface morphology.
    Vo TP; Pham TV; Weina K; Tran TNH; Vo LTV; Nguyen PT; Bui TLH; Phan TH; Nguyen DQ
    BMC Chem; 2023 Sep; 17(1):119. PubMed ID: 37735704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents.
    Doldolova K; Bener M; Lalikoğlu M; Aşçı YS; Arat R; Apak R
    Food Chem; 2021 Aug; 353():129337. PubMed ID: 33752120
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrasound-Assisted Extraction of Polyphenols from Maritime Pine Residues with Deep Eutectic Solvents.
    Duarte H; Gomes V; Aliaño-González MJ; Faleiro L; Romano A; Medronho B
    Foods; 2022 Nov; 11(23):. PubMed ID: 36496562
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of Natural Deep Eutectic Solvents for Extraction of Bioactive Components from
    Tsvetov N; Paukshta O; Fokina N; Volodina N; Samarov A
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677969
    [No Abstract]   [Full Text] [Related]  

  • 56. A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents.
    Alañón ME; Ivanović M; Pimentel-Mora S; Borrás-Linares I; Arráez-Román D; Segura-Carretero A
    Food Res Int; 2020 Nov; 137():109646. PubMed ID: 33233225
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Special designed deep eutectic solvents for the recovery of high added-value products from olive leaf: a sustainable environment for bioactive materials.
    Şahin S; Kurtulbaş E; Bilgin M
    Prep Biochem Biotechnol; 2021; 51(5):422-429. PubMed ID: 33000995
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative Study of Novel Methods for Olive Leaf Phenolic Compound Extraction Using NADES as Solvents.
    Siamandoura P; Tzia C
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615544
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimizing green approach to enhanced antioxidants from Thai pigmented rice bran using deep eutectic solvent-based ultrasonic-assisted extraction.
    Ratanasongtham P; Bunmusik W; Luangkamin S; Mahatheeranont S; Suttiarporn P
    Heliyon; 2024 Jan; 10(1):e23525. PubMed ID: 38187326
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study on Process Optimization and Antioxidant Activity of Polysaccharide from
    Luo L; Fan W; Qin J; Guo S; Xiao H; Tang Z
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.