These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35708024)

  • 1. Simple and rapid separation of Haematococcus pluvialis and ciliate based on the dean-coupled inertial microfluidics.
    Jiang D; Wang L; Liu Y; Huo X; Lin J; Li L
    J Sep Sci; 2022 Oct; 45(20):3900-3908. PubMed ID: 35708024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth Characteristic Analysis of
    Song C; Chen Z; Zheng X; Yang S; Duan X; Jiang Y; Tu X; Gan J; Jiang S
    Anal Chem; 2022 Apr; 94(15):5769-5775. PubMed ID: 35384647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Productivity of Astaxanthin from Photosensitive
    Lee KH; Chun Y; Lee JH; Park C; Yoo HY; Kwak HS
    Mar Drugs; 2022 Mar; 20(4):. PubMed ID: 35447893
    [No Abstract]   [Full Text] [Related]  

  • 6. Low pressure supercritical CO
    Cheng X; Qi Z; Burdyny T; Kong T; Sinton D
    Bioresour Technol; 2018 Feb; 250():481-485. PubMed ID: 29197770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial Microfluidics-Based Separation of Microalgae Using a Contraction-Expansion Array Microchannel.
    Kim GY; Son J; Han JI; Park JK
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33477950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature plasma promotes growth of Haematococcus pluvialis and accumulation of astaxanthin by regulating histone H3 lysine 4 tri-methylation.
    Li L; Chen Z; Acheampong A; Huang Q
    Bioresour Technol; 2022 Jan; 343():126095. PubMed ID: 34624470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research of Fluridone's Effects on Growth and Pigment Accumulation of
    Sun J; Zan J; Zang X
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328543
    [No Abstract]   [Full Text] [Related]  

  • 10. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances.
    Kim B; Youn Lee S; Lakshmi Narasimhan A; Kim S; Oh YK
    Bioresour Technol; 2022 Jan; 343():126124. PubMed ID: 34653624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment.
    Aye Myint A; Hariyanto P; Irshad M; Ruqian C; Wulandari S; Eui Hong M; Jun Sim S; Kim J
    Bioresour Technol; 2022 Feb; 346():126616. PubMed ID: 34954361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stress induced astaxanthin accumulation of H. pluvialis on a chip.
    Yao J; Kim HS; Kim JY; Choi YE; Park J
    Lab Chip; 2020 Feb; 20(3):647-654. PubMed ID: 31930234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of astaxanthin production in Haematococcus pluvialis using zinc oxide nanoparticles.
    Nasri N; Keyhanfar M; Behbahani M; Dini G
    J Biotechnol; 2021 Dec; 342():72-78. PubMed ID: 34673120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application.
    Lee C; Choi YE; Yun YS
    J Biotechnol; 2016 Oct; 236():120-7. PubMed ID: 27544287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid screening astaxanthin-hyperproducing Haematococcus pluvialis mutants through near-infrared spectroscopy.
    Liu JH; Song L; Huang Q
    Lett Appl Microbiol; 2016 Feb; 62(2):185-91. PubMed ID: 26643570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advances in astaxanthin biosynthesis in Haematococcus pluvialis].
    Jiang S; Tong S
    Sheng Wu Gong Cheng Xue Bao; 2019 Jun; 35(6):988-997. PubMed ID: 31231995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis.
    Khoo KS; Lee SY; Ooi CW; Fu X; Miao X; Ling TC; Show PL
    Bioresour Technol; 2019 Sep; 288():121606. PubMed ID: 31178260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy.
    Xi T; Kim DG; Roh SW; Choi JS; Choi YE
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6231-6238. PubMed ID: 26860938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences between Motile and Nonmotile Cells of
    Li F; Cai M; Lin M; Huang X; Wang J; Ke H; Zheng X; Chen D; Wang C; Wu S; An Y
    Mar Drugs; 2019 Jan; 17(1):. PubMed ID: 30634492
    [No Abstract]   [Full Text] [Related]  

  • 20. A joint strategy comprising melatonin and 3-methyladenine to concurrently stimulate biomass and astaxanthin hyperaccumulation by Haematococcus pluvialis.
    Zhao Y; Cui J; Li Q; Qiao T; Zhong DB; Zhao P; Yu X
    Bioresour Technol; 2021 Dec; 341():125784. PubMed ID: 34419876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.