BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35708082)

  • 41. The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies.
    Rice AP
    Curr Pharm Des; 2017; 23(28):4098-4102. PubMed ID: 28677507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma.
    Ma H; Seebacher NA; Hornicek FJ; Duan Z
    EBioMedicine; 2019 Jan; 39():182-193. PubMed ID: 30579871
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distinct Cdk9-phosphatase switches act at the beginning and end of elongation by RNA polymerase II.
    Parua PK; Kalan S; Benjamin B; Sansó M; Fisher RP
    Nat Commun; 2020 Aug; 11(1):4338. PubMed ID: 32859893
    [TBL] [Abstract][Full Text] [Related]  

  • 44. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast.
    Viladevall L; St Amour CV; Rosebrock A; Schneider S; Zhang C; Allen JJ; Shokat KM; Schwer B; Leatherwood JK; Fisher RP
    Mol Cell; 2009 Mar; 33(6):738-51. PubMed ID: 19328067
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple myeloma: Combination therapy of BET proteolysis targeting chimeric molecule with CDK9 inhibitor.
    Lim SL; Xu L; Han BC; Shyamsunder P; Chng WJ; Koeffler HP
    PLoS One; 2020; 15(6):e0232068. PubMed ID: 32559187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1).
    Chiu YL; Cao H; Jacque JM; Stevenson M; Rana TM
    J Virol; 2004 Mar; 78(5):2517-29. PubMed ID: 14963154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription.
    Sabò A; Lusic M; Cereseto A; Giacca M
    Mol Cell Biol; 2008 Apr; 28(7):2201-12. PubMed ID: 18250157
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discovery and SAR of novel pyrazolo[1,5-a]pyrimidines as inhibitors of CDK9.
    Phillipson LJ; Segal DH; Nero TL; Parker MW; Wan SS; de Silva M; Guthridge MA; Wei AH; Burns CJ
    Bioorg Med Chem; 2015 Oct; 23(19):6280-96. PubMed ID: 26349627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insights into the function of the human P-TEFb component CDK9 in the regulation of chromatin modifications and co-transcriptional mRNA processing.
    Pirngruber J; Shchebet A; Johnsen SA
    Cell Cycle; 2009 Nov; 8(22):3636-42. PubMed ID: 19844166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of cdk9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1.
    Durand LO; Roizman B
    J Virol; 2008 Nov; 82(21):10591-9. PubMed ID: 18753202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CDK9 inhibition blocks the initiation of PINK1-PRKN-mediated mitophagy by regulating the SIRT1-FOXO3-BNIP3 axis and enhances the therapeutic effects involving mitochondrial dysfunction in hepatocellular carcinoma.
    Yao J; Wang J; Xu Y; Guo Q; Sun Y; Liu J; Li S; Guo Y; Wei L
    Autophagy; 2022 Aug; 18(8):1879-1897. PubMed ID: 34890308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polo-like kinase 1 inhibits the activity of positive transcription elongation factor of RNA Pol II b (P-TEFb).
    Jiang L; Huang Y; Deng M; Liu T; Lai W; Ye X
    PLoS One; 2013; 8(8):e72289. PubMed ID: 23977272
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure.
    Sano M; Wang SC; Shirai M; Scaglia F; Xie M; Sakai S; Tanaka T; Kulkarni PA; Barger PM; Youker KA; Taffet GE; Hamamori Y; Michael LH; Craigen WJ; Schneider MD
    EMBO J; 2004 Sep; 23(17):3559-69. PubMed ID: 15297879
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The CDK9-cyclin T1 complex mediates saturated fatty acid-induced vascular calcification by inducing expression of the transcription factor CHOP.
    Shiozaki Y; Okamura K; Kohno S; Keenan AL; Williams K; Zhao X; Chick WS; Miyazaki-Anzai S; Miyazaki M
    J Biol Chem; 2018 Nov; 293(44):17008-17020. PubMed ID: 30209133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cdk9 T-loop phosphorylation is regulated by the calcium signaling pathway.
    Ramakrishnan R; Rice AP
    J Cell Physiol; 2012 Feb; 227(2):609-17. PubMed ID: 21448926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription.
    Zhou M; Halanski MA; Radonovich MF; Kashanchi F; Peng J; Price DH; Brady JN
    Mol Cell Biol; 2000 Jul; 20(14):5077-86. PubMed ID: 10866664
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription.
    Fu TJ; Peng J; Lee G; Price DH; Flores O
    J Biol Chem; 1999 Dec; 274(49):34527-30. PubMed ID: 10574912
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cdk-related kinase 9 regulates RNA polymerase II mediated transcription in Toxoplasma gondii.
    Deshmukh AS; Mitra P; Kolagani A; Gurupwar R
    Biochim Biophys Acta Gene Regul Mech; 2018 Jun; 1861(6):572-585. PubMed ID: 29466697
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology.
    Wang S; Fischer PM
    Trends Pharmacol Sci; 2008 Jun; 29(6):302-13. PubMed ID: 18423896
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II.
    Larochelle S; Amat R; Glover-Cutter K; Sansó M; Zhang C; Allen JJ; Shokat KM; Bentley DL; Fisher RP
    Nat Struct Mol Biol; 2012 Nov; 19(11):1108-15. PubMed ID: 23064645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.