These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35708179)

  • 1. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum's olfactory tubercle.
    Martiros N; Kapoor V; Kim SE; Murthy VN
    Elife; 2022 Jun; 11():. PubMed ID: 35708179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.
    Murata K; Kanno M; Ieki N; Mori K; Yamaguchi M
    J Neurosci; 2015 Jul; 35(29):10581-99. PubMed ID: 26203152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamatergic Neurons in the Piriform Cortex Influence the Activity of D1- and D2-Type Receptor-Expressing Olfactory Tubercle Neurons.
    White KA; Zhang YF; Zhang Z; Bhattarai JP; Moberly AH; In 't Zandt EE; Pena-Bravo JI; Mi H; Jia X; Fuccillo MV; Xu F; Ma M; Wesson DW
    J Neurosci; 2019 Nov; 39(48):9546-9559. PubMed ID: 31628176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The olfactory tubercle encodes odor valence in behaving mice.
    Gadziola MA; Tylicki KA; Christian DL; Wesson DW
    J Neurosci; 2015 Mar; 35(11):4515-27. PubMed ID: 25788670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Neural System that Represents the Association of Odors with Rewarded Outcomes and Promotes Behavioral Engagement.
    Gadziola MA; Stetzik LA; Wright KN; Milton AJ; Arakawa K; Del Mar Cortijo M; Wesson DW
    Cell Rep; 2020 Jul; 32(3):107919. PubMed ID: 32697986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle.
    Gadziola MA; Wesson DW
    J Neurosci; 2016 Jan; 36(2):548-60. PubMed ID: 26758844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposing Roles of Dopamine Receptor D1- and D2-Expressing Neurons in the Anteromedial Olfactory Tubercle in Acquisition of Place Preference in Mice.
    Murata K; Kinoshita T; Fukazawa Y; Kobayashi K; Yamanaka A; Hikida T; Manabe H; Yamaguchi M
    Front Behav Neurosci; 2019; 13():50. PubMed ID: 30930757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Learning of Odor-Value Association in the Olfactory Striatum.
    Millman DJ; Murthy VN
    J Neurosci; 2020 May; 40(22):4335-4347. PubMed ID: 32321744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of valence signaling in a striatopallidal circuit.
    Lee D; Liu L; Root CM
    bioRxiv; 2023 Dec; ():. PubMed ID: 37577586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular Profiles of Prodynorphin and Preproenkephalin mRNA-Expressing Neurons in the Anterior Olfactory Tubercle of Mice.
    Maegawa A; Murata K; Kuroda K; Fujieda S; Fukazawa Y
    Front Neural Circuits; 2022; 16():908964. PubMed ID: 35937204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
    Wang D; Liu P; Mao X; Zhou Z; Cao T; Xu J; Sun C; Li A
    J Neurosci; 2019 Dec; 39(50):10002-10018. PubMed ID: 31672791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothetical Roles of the Olfactory Tubercle in Odor-Guided Eating Behavior.
    Murata K
    Front Neural Circuits; 2020; 14():577880. PubMed ID: 33262693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice.
    Kruzich PJ; Grandy DK
    BMC Neurosci; 2004 Apr; 5():12. PubMed ID: 15061865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phasic Dopamine Modifies Sensory-Driven Output of Striatal Neurons through Synaptic Plasticity.
    Wieland S; Schindler S; Huber C; Köhr G; Oswald MJ; Kelsch W
    J Neurosci; 2015 Jul; 35(27):9946-56. PubMed ID: 26156995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous extracellular dopamine regulation in the subregions of the olfactory tubercle.
    Park J; Wakabayashi KT; Szalkowski C; Bhimani RV
    J Neurochem; 2017 Aug; 142(3):365-377. PubMed ID: 28498499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phasic dopamine reinforces distinct striatal stimulus encoding in the olfactory tubercle driving dopaminergic reward prediction.
    Oettl LL; Scheller M; Filosa C; Wieland S; Haag F; Loeb C; Durstewitz D; Shusterman R; Russo E; Kelsch W
    Nat Commun; 2020 Jul; 11(1):3460. PubMed ID: 32651365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward.
    Zhang Z; Liu Q; Wen P; Zhang J; Rao X; Zhou Z; Zhang H; He X; Li J; Zhou Z; Xu X; Zhang X; Luo R; Lv G; Li H; Cao P; Wang L; Xu F
    Elife; 2017 Dec; 6():. PubMed ID: 29251597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Attention Controls Olfactory Decisions and the Neural Encoding of Odors.
    Carlson KS; Gadziola MA; Dauster ES; Wesson DW
    Curr Biol; 2018 Jul; 28(14):2195-2205.e4. PubMed ID: 30056854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embryonic and postnatal development of mouse olfactory tubercle.
    Martin-Lopez E; Xu C; Liberia T; Meller SJ; Greer CA
    Mol Cell Neurosci; 2019 Jul; 98():82-96. PubMed ID: 31200100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventral striatal islands of Calleja neurons control grooming in mice.
    Zhang YF; Vargas Cifuentes L; Wright KN; Bhattarai JP; Mohrhardt J; Fleck D; Janke E; Jiang C; Cranfill SL; Goldstein N; Schreck M; Moberly AH; Yu Y; Arenkiel BR; Betley JN; Luo W; Stegmaier J; Wesson DW; Spehr M; Fuccillo MV; Ma M
    Nat Neurosci; 2021 Dec; 24(12):1699-1710. PubMed ID: 34795450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.