These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35708198)

  • 1. A comparison of intracranial volume estimation methods and their cross-sectional and longitudinal associations with age.
    Nerland S; Stokkan TS; Jørgensen KN; Wortinger LA; Richard G; Beck D; van der Meer D; Westlye LT; Andreassen OA; Agartz I; Barth C
    Hum Brain Mapp; 2022 Oct; 43(15):4620-4639. PubMed ID: 35708198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Intracranial Volume in Brain Research: An Evaluation of Methods.
    Sargolzaei S; Sargolzaei A; Cabrerizo M; Chen G; Goryawala M; Pinzon-Ardila A; Gonzalez-Arias SM; Adjouadi M
    Neuroinformatics; 2015 Oct; 13(4):427-41. PubMed ID: 25822811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the intracranial volume from early adulthood to the sixth decade of life: A longitudinal study.
    Caspi Y; Brouwer RM; Schnack HG; van de Nieuwenhuijzen ME; Cahn W; Kahn RS; Niessen WJ; van der Lugt A; Pol HH
    Neuroimage; 2020 Oct; 220():116842. PubMed ID: 32339774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracranial volume estimated with commonly used methods could introduce bias in studies including brain volume measurements.
    Nordenskjöld R; Malmberg F; Larsson EM; Simmons A; Brooks SJ; Lind L; Ahlström H; Johansson L; Kullberg J
    Neuroimage; 2013 Dec; 83():355-60. PubMed ID: 23827332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness of Automated Methods for Brain Volume Measurements across Different MRI Field Strengths.
    Heinen R; Bouvy WH; Mendrik AM; Viergever MA; Biessels GJ; de Bresser J
    PLoS One; 2016; 11(10):e0165719. PubMed ID: 27798694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast CSF MRI for brain segmentation; Cross-validation by comparison with 3D T1-based brain segmentation methods.
    van der Kleij LA; de Bresser J; Hendrikse J; Siero JCW; Petersen ET; De Vis JB
    PLoS One; 2018; 13(4):e0196119. PubMed ID: 29672584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain volumes quantification from MRI in healthy controls: Assessing correlation, agreement and robustness of a convolutional neural network-based software against FreeSurfer, CAT12 and FSL.
    Chaves H; Dorr F; Costa ME; Serra MM; Slezak DF; Farez MF; Sevlever G; Yañez P; Cejas C
    J Neuroradiol; 2021 May; 48(3):147-156. PubMed ID: 33137334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A practical guideline for intracranial volume estimation in patients with Alzheimer's disease.
    Sargolzaei S; Sargolzaei A; Cabrerizo M; Chen G; Goryawala M; Noei S; Zhou Q; Duara R; Barker W; Adjouadi M
    BMC Bioinformatics; 2015; 16 Suppl 7(Suppl 7):S8. PubMed ID: 25953026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance.
    Malone IB; Leung KK; Clegg S; Barnes J; Whitwell JL; Ashburner J; Fox NC; Ridgway GR
    Neuroimage; 2015 Jan; 104():366-72. PubMed ID: 25255942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling for premorbid brain size in imaging studies: T1-derived cranium scaling factor vs. T2-derived intracranial vault volume.
    Fein G; Di Sclafani V; Taylor C; Moon K; Barakos J; Tran H; Landman B; Shumway R
    Psychiatry Res; 2004 Jul; 131(2):169-76. PubMed ID: 15313523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normative data for subcortical regional volumes over the lifetime of the adult human brain.
    Potvin O; Mouiha A; Dieumegarde L; Duchesne S;
    Neuroimage; 2016 Aug; 137():9-20. PubMed ID: 27165761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proportional intracranial volume correction differentially biases behavioral predictions across neuroanatomical features, sexes, and development.
    Dhamala E; Ooi LQR; Chen J; Kong R; Anderson KM; Chin R; Yeo BTT; Holmes AJ
    Neuroimage; 2022 Oct; 260():119485. PubMed ID: 35843514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating intracranial volume using intracranial area in healthy children and those with childhood status epilepticus.
    Piper RJ; Yoong MM; Pujar S; Chin RF
    Brain Behav; 2014; 4(6):936-42. PubMed ID: 25365798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy.
    Steenwijk MD; Amiri H; Schoonheim MM; de Sitter A; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2017; 15():843-853. PubMed ID: 28794970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Head circumference as a useful surrogate for intracranial volume in older adults.
    Hshieh TT; Fox ML; Kosar CM; Cavallari M; Guttmann CR; Alsop D; Marcantonio ER; Schmitt EM; Jones RN; Inouye SK
    Int Psychogeriatr; 2016 Jan; 28(1):157-62. PubMed ID: 26631180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis.
    Guo C; Ferreira D; Fink K; Westman E; Granberg T
    Eur Radiol; 2019 Mar; 29(3):1355-1364. PubMed ID: 30242503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurodevelopment in adolescents and adults with fetal alcohol spectrum disorders (FASD): A magnetic resonance region of interest analysis.
    Inkelis SM; Moore EM; Bischoff-Grethe A; Riley EP
    Brain Res; 2020 Apr; 1732():146654. PubMed ID: 31930998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampus and amygdala volumes from magnetic resonance images in children: Assessing accuracy of FreeSurfer and FSL against manual segmentation.
    Schoemaker D; Buss C; Head K; Sandman CA; Davis EP; Chakravarty MM; Gauthier S; Pruessner JC
    Neuroimage; 2016 Apr; 129():1-14. PubMed ID: 26824403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain morphometry reproducibility in multi-center 3T MRI studies: a comparison of cross-sectional and longitudinal segmentations.
    Jovicich J; Marizzoni M; Sala-Llonch R; Bosch B; Bartrés-Faz D; Arnold J; Benninghoff J; Wiltfang J; Roccatagliata L; Nobili F; Hensch T; Tränkner A; Schönknecht P; Leroy M; Lopes R; Bordet R; Chanoine V; Ranjeva JP; Didic M; Gros-Dagnac H; Payoux P; Zoccatelli G; Alessandrini F; Beltramello A; Bargalló N; Blin O; Frisoni GB;
    Neuroimage; 2013 Dec; 83():472-84. PubMed ID: 23668971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of automated brain volumetry methods with stereology in children aged 2 to 3 years.
    Mayer KN; Latal B; Knirsch W; Scheer I; von Rhein M; Reich B; Bauer J; Gummel K; Roberts N; Tuura RO
    Neuroradiology; 2016 Sep; 58(9):901-10. PubMed ID: 27380040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.