BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35708204)

  • 1. Molecular characteristics of the multi-functional FAO enzyme ACAD9 illustrate the importance of FADH
    Speijer D
    Bioessays; 2022 Aug; 44(8):e2200056. PubMed ID: 35708204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can All Major ROS Forming Sites of the Respiratory Chain Be Activated By High FADH
    Speijer D
    Bioessays; 2019 Jan; 41(1):e1800180. PubMed ID: 30512221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Being right on Q: shaping eukaryotic evolution.
    Speijer D
    Biochem J; 2016 Nov; 473(22):4103-4127. PubMed ID: 27834740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The assembly of the Mitochondrial Complex I Assembly complex uncovers a redox pathway coordination.
    McGregor L; Acajjaoui S; Desfosses A; Saïdi M; Bacia-Verloop M; Schwarz JJ; Juyoux P; von Velsen J; Bowler MW; McCarthy AA; Kandiah E; Gutsche I; Soler-Lopez M
    Nat Commun; 2023 Dec; 14(1):8248. PubMed ID: 38086790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of The Mitochondrial Complex I Assembly Complex Suggests a Regulatory Role for Deflavination.
    Giachin G; Jessop M; Bouverot R; Acajjaoui S; Saïdi M; Chretien A; Bacia-Verloop M; Signor L; Mas PJ; Favier A; Borel Meneroud E; Hons M; Hart DJ; Kandiah E; Boeri Erba E; Buisson A; Leonard G; Gutsche I; Soler-Lopez M
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4689-4697. PubMed ID: 33320993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ACAD9, a complex I assembly factor with a moonlighting function in fatty acid oxidation deficiencies.
    Nouws J; Te Brinke H; Nijtmans LG; Houten SM
    Hum Mol Genet; 2014 Mar; 23(5):1311-9. PubMed ID: 24158852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the Roles of Mitochondrial Complex I Intermediate Assembly Complex Factors in the Biogenesis of Complex I.
    Formosa LE; Muellner-Wong L; Reljic B; Sharpe AJ; Jackson TD; Beilharz TH; Stojanovski D; Lazarou M; Stroud DA; Ryan MT
    Cell Rep; 2020 Apr; 31(3):107541. PubMed ID: 32320651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.
    Orr AL; Ashok D; Sarantos MR; Shi T; Hughes RE; Brand MD
    Free Radic Biol Med; 2013 Dec; 65():1047-1059. PubMed ID: 23994103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species.
    Schönfeld P; Wieckowski MR; Lebiedzińska M; Wojtczak L
    Biochim Biophys Acta; 2010; 1797(6-7):929-38. PubMed ID: 20085746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hexavalent chromium on electron leakage of respiratory chain in mitochondria isolated from rat liver.
    Xie Y; Zhong C; Zeng M; Guan L; Luo L
    Cell Physiol Biochem; 2013; 31(2-3):473-85. PubMed ID: 23548633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to deal with oxygen radicals stemming from mitochondrial fatty acid oxidation.
    Speijer D; Manjeri GR; Szklarczyk R
    Philos Trans R Soc Lond B Biol Sci; 2014 Jul; 369(1646):20130446. PubMed ID: 24864314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The production of reactive oxygen species by complex I.
    Hirst J; King MS; Pryde KR
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):976-80. PubMed ID: 18793173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for a complex I mutation that blocks pathological ROS production.
    Yin Z; Burger N; Kula-Alwar D; Aksentijević D; Bridges HR; Prag HA; Grba DN; Viscomi C; James AM; Mottahedin A; Krieg T; Murphy MP; Hirst J
    Nat Commun; 2021 Jan; 12(1):707. PubMed ID: 33514727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH₂/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation.
    Speijer D
    Bioessays; 2011 Feb; 33(2):88-94. PubMed ID: 21137096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I).
    Treberg JR; Quinlan CL; Brand MD
    J Biol Chem; 2011 Aug; 286(31):27103-10. PubMed ID: 21659507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.