These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35708502)

  • 1. Influence of the Hydrolyzable Tannin Structure on the Characteristics of Insoluble Hydrolyzable Tannin-Protein Complexes.
    Engström MT; Virtanen V; Salminen JP
    J Agric Food Chem; 2022 Oct; 70(41):13036-13048. PubMed ID: 35708502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Features of Hydrolyzable Tannins Determine Their Ability to Form Insoluble Complexes with Bovine Serum Albumin.
    Engström MT; Arvola J; Nenonen S; Virtanen VTJ; Leppä MM; Tähtinen P; Salminen JP
    J Agric Food Chem; 2019 Jun; 67(24):6798-6808. PubMed ID: 31134805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths.
    Deaville ER; Green RJ; Mueller-Harvey I; Willoughby I; Frazier RA
    J Agric Food Chem; 2007 May; 55(11):4554-61. PubMed ID: 17474755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Oxidative Activity of Ellagitannins Dictates Their Tendency To Form Highly Stabilized Complexes with Bovine Serum Albumin at Increased pH.
    Engström MT; Sun X; Suber MP; Li M; Salminen JP; Hagerman AE
    J Agric Food Chem; 2016 Nov; 64(47):8994-9003. PubMed ID: 27809509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of condensed tannin size as individual and mixed polymers on bovine serum albumin precipitation.
    Harbertson JF; Kilmister RL; Kelm MA; Downey MO
    Food Chem; 2014 Oct; 160():16-21. PubMed ID: 24799203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing protein-tannin interactions by isothermal titration microcalorimetry.
    Frazier RA; Papadopoulou A; Mueller-Harvey I; Kissoon D; Green RJ
    J Agric Food Chem; 2003 Aug; 51(18):5189-95. PubMed ID: 12926857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative examination of oxidized polyphenol-protein complexes.
    Chen Y; Hagerman AE
    J Agric Food Chem; 2004 Oct; 52(20):6061-7. PubMed ID: 15453667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coriariin M, a trimeric hydrolysable tannin with dehydrodigalloyl and valoneoyl groups as linking units, and accompanying dimeric hydrolysable tannins from Coriaria japonica.
    Shimozu Y; Hirai T; Hatano T
    Phytochemistry; 2018 Jul; 151():110-118. PubMed ID: 29679876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model describing tannin-protein association.
    Silber ML; Davitt BB; Khairutdinov RF; Hurst JK
    Anal Biochem; 1998 Oct; 263(1):46-50. PubMed ID: 9750141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and molecular flexibility affect the binding of ellagitannins to bovine serum albumin.
    Dobreva MA; Green RJ; Mueller-Harvey I; Salminen JP; Howlin BJ; Frazier RA
    J Agric Food Chem; 2014 Sep; 62(37):9186-94. PubMed ID: 25162485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes.
    Mané C; Sommerer N; Yalcin T; Cheynier V; Cole RB; Fulcrand H
    Anal Chem; 2007 Mar; 79(6):2239-48. PubMed ID: 17295445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity of Tannins to Cellulose: A Chromatographic Tool for Revealing Structure-Activity Patterns.
    Suominen E; Savila S; Sillanpää M; Damlin P; Karonen M
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complexity of condensed tannin binding to bovine serum albumin--An isothermal titration calorimetry study.
    Kilmister RL; Faulkner P; Downey MO; Darby SJ; Falconer RJ
    Food Chem; 2016 Jan; 190():173-178. PubMed ID: 26212957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stoichiometric studies of tannin-protein co-precipitation.
    Kawamoto H; Nakatsubo F; Murakami K
    Phytochemistry; 1996 Mar; 41(5):1427-31. PubMed ID: 8729465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of tannin with human salivary proline-rich proteins.
    Lu Y; Bennick A
    Arch Oral Biol; 1998 Sep; 43(9):717-28. PubMed ID: 9783826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Metal Ions on the Precipitation of Penta-O-galloyl-β-d-glucopyranose by Protein.
    Zhang H; Zhang L; Tang L; Hu X; Xu M
    J Agric Food Chem; 2021 May; 69(17):5059-5066. PubMed ID: 33896171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-binding capacity of microquantities of tannins.
    Dawra RK; Makkar HP; Singh B
    Anal Biochem; 1988 Apr; 170(1):50-3. PubMed ID: 2455459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of soluble non-covalent complexes between bovine serum albumin and beta-1,2,3,4,6-penta-O-galloyl-D-glucopyranose by MALDI-TOF MS.
    Chen Y; Hagerman AE
    J Agric Food Chem; 2004 Jun; 52(12):4008-11. PubMed ID: 15186130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolubilization of Protein from Water-Insoluble Phlorotannin-Protein Complexes upon Acidification.
    Vissers AM; Blok AE; Westphal AH; Hendriks WH; Gruppen H; Vincken JP
    J Agric Food Chem; 2017 Nov; 65(44):9595-9602. PubMed ID: 29058916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligomeric hydrolyzable tannins from Monochaetum multiflorum.
    Isaza JH; Ito H; Yoshida T
    Phytochemistry; 2004 Feb; 65(3):359-67. PubMed ID: 14751308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.