These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35708749)

  • 1. Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition.
    Queiroz SS; Oliva B; Silva TF; Segato F; Felipe MGA
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4587-4606. PubMed ID: 35708749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylitol production from a mutant strain of Candida tropicalis.
    Jeon YJ; Shin HS; Rogers PL
    Lett Appl Microbiol; 2011 Jul; 53(1):106-13. PubMed ID: 21554342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient xylose utilization leads to highest lipid productivity in Candida tropicalis SY005 among six yeast strains grown in mixed sugar medium.
    Chattopadhyay A; Maiti MK
    Appl Microbiol Biotechnol; 2020 Apr; 104(7):3133-3144. PubMed ID: 32076780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate.
    Jeon WY; Shim WY; Lee SH; Choi JH; Kim JH
    Bioprocess Biosyst Eng; 2013 Jun; 36(6):809-17. PubMed ID: 23411871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor.
    Zhang L; Chen Z; Wang J; Shen W; Li Q; Chen X
    Microb Cell Fact; 2021 May; 20(1):105. PubMed ID: 34034730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of two sugar transporters responsible for efficient xylose uptake in an oleaginous yeast Candida tropicalis SY005.
    Chattopadhyay A; Singh R; Das AK; Maiti MK
    Arch Biochem Biophys; 2020 Nov; 695():108645. PubMed ID: 33122161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
    Kim JH; Han KC; Koh YH; Ryu YW; Seo JH
    J Ind Microbiol Biotechnol; 2002 Jul; 29(1):16-9. PubMed ID: 12080422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis.
    Lee JK; Koo BS; Kim SY
    Appl Environ Microbiol; 2003 Oct; 69(10):6179-88. PubMed ID: 14532079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production.
    Misra S; Raghuwanshi S; Gupta P; Dutt K; Saxena RK
    Antonie Van Leeuwenhoek; 2012 Feb; 101(2):393-402. PubMed ID: 21956659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis.
    Jeon WY; Yoon BH; Ko BS; Shim WY; Kim JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):191-8. PubMed ID: 21922311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis.
    Ko BS; Kim J; Kim JH
    Appl Environ Microbiol; 2006 Jun; 72(6):4207-13. PubMed ID: 16751533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The isolation of pentose-assimilating yeasts and their xylose fermentation potential.
    Martins GM; Bocchini-Martins DA; Bezzerra-Bussoli C; Pagnocca FC; Boscolo M; Monteiro DA; Silva RD; Gomes E
    Braz J Microbiol; 2018; 49(1):162-168. PubMed ID: 28888830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved xylitol production by the novel inhibitor-tolerant yeast
    Singh AK; Pandey AK; Kumar M; Paul T; Gaur NA
    Environ Technol; 2024 Jan; 45(1):1-15. PubMed ID: 35762251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain.
    Morais Junior WG; Pacheco TF; Trichez D; Almeida JRM; Gonçalves SB
    Yeast; 2019 May; 36(5):349-361. PubMed ID: 30997699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.
    Tamburini E; Costa S; Marchetti MG; Pedrini P
    Biomolecules; 2015 Aug; 5(3):1979-89. PubMed ID: 26295411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis.
    Oh DK; Kim SY
    Appl Microbiol Biotechnol; 1998 Oct; 50(4):419-25. PubMed ID: 9830092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus-31 and carbon-13 nuclear magnetic resonance study of glucose and xylose metabolism in agarose-immobilized Candida tropicalis.
    Lohmeier-Vogel EM; Hahn-Hägerdal B; Vogel HJ
    Appl Environ Microbiol; 1995 Apr; 61(4):1420-5. PubMed ID: 7747962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor.
    Kwon SG; Park SW; Oh DK
    J Biosci Bioeng; 2006 Jan; 101(1):13-8. PubMed ID: 16503285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of xylitol from Candida tropicalis by using an oxidation-reduction potential-stat controlled fermentation.
    Sheu DC; Duan KJ; Jou SR; Chen YC; Chen CW
    Biotechnol Lett; 2003 Dec; 25(24):2065-9. PubMed ID: 14969410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.