These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 35708773)
1. Mouse precision-cut liver slices as an ex vivo model to study drug-induced cholestasis. Karsten REH; Krijnen NJW; Maho W; Permentier H; Verpoorte E; Olinga P Arch Toxicol; 2022 Sep; 96(9):2523-2543. PubMed ID: 35708773 [TBL] [Abstract][Full Text] [Related]
2. Rat precision-cut liver slices predict drug-induced cholestatic injury. Starokozhko V; Greupink R; van de Broek P; Soliman N; Ghimire S; de Graaf IAM; Groothuis GMM Arch Toxicol; 2017 Oct; 91(10):3403-3413. PubMed ID: 28391356 [TBL] [Abstract][Full Text] [Related]
3. Development of a mechanistic biokinetic model for hepatic bile acid handling to predict possible cholestatic effects of drugs. Notenboom S; Weigand KM; Proost JH; van Lipzig MMH; van de Steeg E; van den Broek PHH; Greupink R; Russel FGM; Groothuis GMM Eur J Pharm Sci; 2018 Mar; 115():175-184. PubMed ID: 29309877 [TBL] [Abstract][Full Text] [Related]
4. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Garzel B; Zhang L; Huang SM; Wang H Curr Drug Metab; 2019; 20(8):621-632. PubMed ID: 31288715 [TBL] [Abstract][Full Text] [Related]
5. Changes in Bile Acid Concentrations after Administration of Ketoconazole or Rifampicin to Chimeric Mice with Humanized Liver. Sanoh S; Tamura Y; Fujino C; Sugahara G; Yoshizane Y; Yanagi A; Kisoh K; Ishida Y; Tateno C; Ohta S; Kotake Y Biol Pharm Bull; 2019; 42(8):1366-1375. PubMed ID: 31366871 [TBL] [Abstract][Full Text] [Related]
6. Identification of reversible OATP1B1 and time-dependent CYP3A4 inhibition as the major risk factors for drug-induced cholestasis (DIC). Kastrinou-Lampou V; Rodríguez-Pérez R; Poller B; Huth F; Gáborik Z; Mártonné-Tóth B; Temesszentandrási-Ambrus C; Schadt HS; Kullak-Ublick GA; Arand M; Camenisch G Arch Toxicol; 2024 Oct; 98(10):3409-3424. PubMed ID: 39023798 [TBL] [Abstract][Full Text] [Related]
7. Validation of precision-cut liver slices to study drug-induced cholestasis: a transcriptomics approach. Vatakuti S; Olinga P; Pennings JLA; Groothuis GMM Arch Toxicol; 2017 Mar; 91(3):1401-1412. PubMed ID: 27344345 [TBL] [Abstract][Full Text] [Related]
8. From hazard to risk prioritization: a case study to predict drug-induced cholestasis using physiologically based kinetic modeling. de Bruijn VMP; Rietjens IMCM Arch Toxicol; 2024 Sep; 98(9):3077-3095. PubMed ID: 38755481 [TBL] [Abstract][Full Text] [Related]
9. Treatment of mouse liver slices with cholestatic hepatotoxicants results in down-regulation of Fxr and its target genes. Szalowska E; Stoopen G; Groot MJ; Hendriksen PJ; Peijnenburg AA BMC Med Genomics; 2013 Oct; 6():39. PubMed ID: 24112857 [TBL] [Abstract][Full Text] [Related]
10. Risk factors for development of cholestatic drug-induced liver injury: inhibition of hepatic basolateral bile acid transporters multidrug resistance-associated proteins 3 and 4. Köck K; Ferslew BC; Netterberg I; Yang K; Urban TJ; Swaan PW; Stewart PW; Brouwer KL Drug Metab Dispos; 2014 Apr; 42(4):665-74. PubMed ID: 24154606 [TBL] [Abstract][Full Text] [Related]
11. Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice. Tang X; Yang Q; Yang F; Gong J; Han H; Yang L; Wang Z J Ethnopharmacol; 2016 Dec; 194():63-71. PubMed ID: 27582267 [TBL] [Abstract][Full Text] [Related]
12. Current insights in the complexities underlying drug-induced cholestasis. Deferm N; De Vocht T; Qi B; Van Brantegem P; Gijbels E; Vinken M; de Witte P; Bouillon T; Annaert P Crit Rev Toxicol; 2019 Jul; 49(6):520-548. PubMed ID: 31589080 [TBL] [Abstract][Full Text] [Related]
13. Disruption of BSEP Function in HepaRG Cells Alters Bile Acid Disposition and Is a Susceptive Factor to Drug-Induced Cholestatic Injury. Qiu X; Zhang Y; Liu T; Shen H; Xiao Y; Bourner MJ; Pratt JR; Thompson DC; Marathe P; Humphreys WG; Lai Y Mol Pharm; 2016 Apr; 13(4):1206-16. PubMed ID: 26910619 [TBL] [Abstract][Full Text] [Related]
14. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice. Liu J; Lu YF; Zhang Y; Wu KC; Fan F; Klaassen CD Toxicol Appl Pharmacol; 2013 Nov; 272(3):816-24. PubMed ID: 23948738 [TBL] [Abstract][Full Text] [Related]
15. In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Dawson S; Stahl S; Paul N; Barber J; Kenna JG Drug Metab Dispos; 2012 Jan; 40(1):130-8. PubMed ID: 21965623 [TBL] [Abstract][Full Text] [Related]
16. Model Systems for Studying the Role of Canalicular Efflux Transporters in Drug-Induced Cholestatic Liver Disease. Stieger B; Mahdi ZM J Pharm Sci; 2017 Sep; 106(9):2295-2301. PubMed ID: 28385542 [TBL] [Abstract][Full Text] [Related]
17. Validation of gene expression profiles from cholestatic hepatotoxicants in vitro against human in vivo cholestasis. Van den Hof WFPM; Coonen MLJ; van Herwijnen M; Brauers K; Jennen D; Olde Damink SWM; Schaap FG; Kleinjans JCS Toxicol In Vitro; 2017 Oct; 44():322-329. PubMed ID: 28778767 [TBL] [Abstract][Full Text] [Related]
18. Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability. Hendriks DF; Fredriksson Puigvert L; Messner S; Mortiz W; Ingelman-Sundberg M Sci Rep; 2016 Oct; 6():35434. PubMed ID: 27759057 [TBL] [Abstract][Full Text] [Related]
19. Establishment of an in vitro cholestasis risk assessment system using two-dimensional cultured HepaRG cells and 12 bile acids. Koga T; Takeuchi K; Umehara K J Toxicol Sci; 2023; 48(1):47-56. PubMed ID: 36599427 [TBL] [Abstract][Full Text] [Related]
20. Classification of Cholestatic and Necrotic Hepatotoxicants Using Transcriptomics on Human Precision-Cut Liver Slices. Vatakuti S; Pennings JL; Gore E; Olinga P; Groothuis GM Chem Res Toxicol; 2016 Mar; 29(3):342-51. PubMed ID: 26881866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]