These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35708874)
1. Interfacial interaction-driven rheological properties of quartz nanofluids from molecular dynamics simulations and density functional theory calculations. Lou Z; Cheng C; Cui Y; Tian H J Mol Model; 2022 Jun; 28(7):189. PubMed ID: 35708874 [TBL] [Abstract][Full Text] [Related]
2. Effect of interface layer on the enhancement of thermal conductivity of SiC-Water nanofluids: Molecular dynamics simulation. Zhu Y; Chen H; Zhang J; Xiao G; Yi M; Chen Z; Xu C J Mol Graph Model; 2024 Mar; 127():108696. PubMed ID: 38147710 [TBL] [Abstract][Full Text] [Related]
3. Experimental Investigation on Stability, Viscosity, and Electrical Conductivity of Water-Based Hybrid Nanofluid of MWCNT-Fe Giwa SO; Sharifpur M; Ahmadi MH; Sohel Murshed SM; Meyer JP Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33429998 [TBL] [Abstract][Full Text] [Related]
4. An Experimental Study on the Rheological Behavior of Carbon Black-Boron Nitride Hybrid Nanofluids and Development of a New Correlation. Michael M; Zagabathuni A; Kumar Pabi S; Ghosh S J Nanosci Nanotechnol; 2021 Jun; 21(6):3283-3290. PubMed ID: 34739783 [TBL] [Abstract][Full Text] [Related]
5. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids. Timofeeva EV; Smith DS; Yu W; France DM; Singh D; Routbort JL Nanotechnology; 2010 May; 21(21):215703. PubMed ID: 20431197 [TBL] [Abstract][Full Text] [Related]
6. Thermophysical properties of nanofluids. Rudyak VY; Minakov AV Eur Phys J E Soft Matter; 2018 Jan; 41(1):15. PubMed ID: 29380078 [TBL] [Abstract][Full Text] [Related]
7. Hybrid Nanofluid Thermal Conductivity and Optimization: Original Approach and Background. Wohld J; Beck J; Inman K; Palmer M; Cummings M; Fulmer R; Vafaei S Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014712 [TBL] [Abstract][Full Text] [Related]
8. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects. Kumar RS; Goswami R; Chaturvedi KR; Sharma T Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498 [TBL] [Abstract][Full Text] [Related]
9. Dissipative particle dynamics simulations of the viscosities of molten TNT and molten TNT suspensions containing nanoparticles. Zhou Y; Li Y; Qian W; He B J Mol Model; 2016 Sep; 22(9):216. PubMed ID: 27553301 [TBL] [Abstract][Full Text] [Related]
10. Investigation on Rheological Properties of Water-Based Novel Ternary Hybrid Nanofluids Using Experimental and Taguchi Method. Mohammed Zayan J; Rasheed AK; John A; Khalid M; Ismail AF; Aabid A; Baig M Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009170 [TBL] [Abstract][Full Text] [Related]
11. Particle-shape-, temperature-, and concentration-dependent thermal conductivity and viscosity of nanofluids. Mirmohammadi SA; Behi M; Gan Y; Shen L Phys Rev E; 2019 Apr; 99(4-1):043109. PubMed ID: 31108613 [TBL] [Abstract][Full Text] [Related]
12. Structure and dynamics of nanofluids: theory and simulations to calculate viscosity. Pozhar LA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1432-46. PubMed ID: 11046424 [TBL] [Abstract][Full Text] [Related]
13. Effect of SWCNT volume fraction on the viscosity of water-based nanofluids. Namarvari H; Razmara N; Meneghini JR; Miranda CR J Mol Model; 2021 Aug; 27(9):253. PubMed ID: 34405317 [TBL] [Abstract][Full Text] [Related]
14. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). Kulkarni DP; Das DK; Chukwu GA J Nanosci Nanotechnol; 2006 Apr; 6(4):1150-4. PubMed ID: 16736780 [TBL] [Abstract][Full Text] [Related]
15. A comparative experimental investigation of dynamic viscosity of ZrO Ajeena AM; Farkas I; Víg P Heliyon; 2023 Oct; 9(10):e21113. PubMed ID: 37886762 [TBL] [Abstract][Full Text] [Related]
16. Estimation of thermophysical property of hybrid nanofluids for solar Thermal applications: Implementation of novel Optimizable Gaussian Process regression (O-GPR) approach for Viscosity prediction. Adun H; Wole-Osho I; Okonkwo EC; Ruwa T; Agwa T; Onochie K; Ukwu H; Bamisile O; Dagbasi M Neural Comput Appl; 2022; 34(13):11233-11254. PubMed ID: 35291505 [TBL] [Abstract][Full Text] [Related]
17. Probing the thermal resistance of solid-liquid interfaces in nanofluids with molecular dynamics. Carrillo-Berdugo I; Navas J; Grau-Crespo R J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38174796 [TBL] [Abstract][Full Text] [Related]
18. Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids. Zhao N; Li Z Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772913 [TBL] [Abstract][Full Text] [Related]
19. Transport properties of alumina nanofluids. Wong KF; Kurma T Nanotechnology; 2008 Aug; 19(34):345702. PubMed ID: 21730657 [TBL] [Abstract][Full Text] [Related]
20. Thermal Conductivity and Viscosity: Review and Optimization of Effects of Nanoparticles. Apmann K; Fulmer R; Soto A; Vafaei S Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33800374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]