These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35709068)

  • 1. Meta-learning-based optical vector beam high-fidelity communication under high scattering.
    Chen W; He H; Lin Q; Chen W; Su Z; Cai B; Zhu W; Zhang L
    Opt Lett; 2022 Jun; 47(12):3131-3134. PubMed ID: 35709068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams.
    Zhu Z; Janasik M; Fyffe A; Hay D; Zhou Y; Kantor B; Winder T; Boyd RW; Leuchs G; Shi Z
    Nat Commun; 2021 Mar; 12(1):1666. PubMed ID: 33712593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical orbital-angular-momentum-multiplexed data transmission under high scattering.
    Gong L; Zhao Q; Zhang H; Hu XY; Huang K; Yang JM; Li YM
    Light Sci Appl; 2019; 8():27. PubMed ID: 30854199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-fidelity multi-channel optical information transmission through scattering media.
    Shao R; Ding C; Liu L; He Q; Qu Y; Yang J
    Opt Express; 2024 Jan; 32(2):2846-2855. PubMed ID: 38297803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical analog-signal transmission system in a dynamic and complex scattering environment using binary encoding with a modified differential method.
    Cao Y; Xiao Y; Chen W
    Opt Express; 2023 May; 31(10):16882-16896. PubMed ID: 37157757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physically-secured high-fidelity free-space optical data transmission through scattering media using dynamic scaling factors.
    Xiao Y; Zhou L; Pan Z; Cao Y; Chen W
    Opt Express; 2022 Feb; 30(5):8186-8198. PubMed ID: 35299565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-modality optical system for single-pixel imaging and transmission through scattering media.
    Hao Y; Chen W
    Opt Lett; 2024 Jan; 49(2):371-374. PubMed ID: 38194571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-adaptive method for creating high efficiency communication channels through random scattering media.
    Hao X; Martin-Rouault L; Cui M
    Sci Rep; 2014 Jul; 4():5874. PubMed ID: 25070592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of particulates on performance of optical communication in space and an adaptive method to minimize such effects.
    Arnon S; Kopeika NS
    Appl Opt; 1994 Jul; 33(21):4930-7. PubMed ID: 20935869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive turbulence compensation and fast auto-alignment link for free-space optical communications.
    Liang Y; Su X; Cai C; Wang L; Liu J; Wang H; Wang J
    Opt Express; 2021 Nov; 29(24):40514-40523. PubMed ID: 34809389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors.
    García-Zambrana A; Castillo-Vázquez B; Castillo-Vázquez C
    Opt Express; 2012 Jan; 20(3):2096-109. PubMed ID: 22330450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams.
    Yuan Y; Lei T; Li Z; Li Y; Gao S; Xie Z; Yuan X
    Sci Rep; 2017 Feb; 7():42276. PubMed ID: 28186198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized multiemitter beams for free-space optical communications through turbulent atmosphere.
    Polynkin P; Peleg A; Klein L; Rhoadarmer T; Moloney J
    Opt Lett; 2007 Apr; 32(8):885-7. PubMed ID: 17375142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning-based high-resolution recognition of fractional-spatial-mode-encoded data for free-space optical communications.
    Na Y; Ko DK
    Sci Rep; 2021 Jan; 11(1):2678. PubMed ID: 33514808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WINDOW: wideband demodulator for optical waveforms.
    Lev O; Wiener T; Cohen D; Eldar YC
    Opt Express; 2017 Aug; 25(16):19444-19456. PubMed ID: 29041138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-supervised dynamic learning for long-term high-fidelity image transmission through unstabilized diffusive media.
    Li Z; Zhou W; Zhou Z; Zhang S; Shi J; Shen C; Zhang J; Chi N; Dai Q
    Nat Commun; 2024 Feb; 15(1):1498. PubMed ID: 38374085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication.
    Liu J; Wang P; Zhang X; He Y; Zhou X; Ye H; Li Y; Xu S; Chen S; Fan D
    Opt Express; 2019 Jun; 27(12):16671-16688. PubMed ID: 31252890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-step system for image receiving in OAM-SK-FSO link.
    Li Z; Su J; Zhao X
    Opt Express; 2020 Oct; 28(21):30520-30541. PubMed ID: 33115052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Multipath Attenuation in the Optical Communication-Based Internet of Underwater Things.
    Qadar R; Bin Qaim W; Nurmi J; Tan B
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information transmission using radial carpet beams.
    Karahroudi MK; Karahroudi MK; Mobashery A; Parmoon B
    Appl Opt; 2019 Mar; 58(8):1886-1894. PubMed ID: 30874052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.