These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35709151)

  • 1. Research on smoke simulation with vortex shedding.
    Tao R; Ren H; Wang D; Bai X
    PLoS One; 2022; 17(6):e0269114. PubMed ID: 35709151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Animating Wall-Bounded Turbulent Smoke via Filament-Mesh Particle-Particle Method.
    Liao X; Si W; Yuan Z; Sun H; Qin J; Wang Q; Heng PA; Xiangyun Liao ; Weixin Si ; Zhiyong Yuan ; Hanqiu Sun ; Jing Qin ; Qiong Wang ; Pheng-Ann Heng
    IEEE Trans Vis Comput Graph; 2018 Mar; 24(3):1260-1273. PubMed ID: 28186900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid Approach for Cardiac Blood Flow Vortex Ring Identification Based on Optical Flow and Lagrangian Averaged Vorticity Deviation.
    Yang K; Wu S; Samuel OW; Zhang H; Ghista DN; Yang D; Wong KKL
    Front Physiol; 2021; 12():698405. PubMed ID: 34539430
    [No Abstract]   [Full Text] [Related]  

  • 4. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.
    Meng Z; Weixin S; Yinling Q; Hanqiu S; Jing Q; Heng PA
    IEEE Comput Graph Appl; 2015; 35(6):60-8. PubMed ID: 25594961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A vortex method of 3D smoke simulation for virtual surgery.
    Hu L; Chen M; Liu PX; Xu S
    Comput Methods Programs Biomed; 2021 Jan; 198():105813. PubMed ID: 33152674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated vortex identification based on Lagrangian averaged vorticity deviation in analysis of blood flow in the atrium from phase contrast MRI.
    Yang K; Wu S; Ghista DN; Yang D; Wong KKL
    Comput Methods Programs Biomed; 2022 Apr; 216():106678. PubMed ID: 35144147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lagrangian-averaged vorticity deviation of spiraling blood flow in the heart during isovolumic contraction and ejection phases.
    Yang K; Wu S; Zhang H; Ghista DN; Samuel OW; Wong KKL
    Med Biol Eng Comput; 2021 Aug; 59(7-8):1417-1430. PubMed ID: 34115272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortical inviscid flows with two-way solid-fluid coupling.
    Vines M; Houston B; Lang J; Lee WS
    IEEE Trans Vis Comput Graph; 2014 Feb; 20(2):303-15. PubMed ID: 24356371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated mitral valve vortex ring extraction from 4D-flow MRI.
    Kräuter C; Reiter U; Reiter C; Nizhnikava V; Masana M; Schmidt A; Fuchsjäger M; Stollberger R; Reiter G
    Magn Reson Med; 2020 Dec; 84(6):3396-3408. PubMed ID: 32557819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Simulation of Bubble Cluster Induced Flow by Three-Dimensional Vortex-in-Cell Method.
    Chen B; Wang Z; Uchiyama T
    J Fluids Eng; 2014 Aug; 136(8):0813011-8130116. PubMed ID: 24895468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding.
    Huang ZJ; Merkle CL; Abdallah S; Tarbell JM
    J Biomech; 1994 Apr; 27(4):391-402. PubMed ID: 8188720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Path integration (PI) method for the parameter-retrieval of aircraft wake vortex by Lidar.
    Li J; Shen C; Gao H; Chan PW; Hon KK; Wang X
    Opt Express; 2020 Feb; 28(3):4286-4306. PubMed ID: 32122084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large eddy simulation of the gas-particle turbulent wake flow.
    Luo K; Jin HH; Fan JR; Cen KF
    J Zhejiang Univ Sci; 2004 Jan; 5(1):106-10. PubMed ID: 14663861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics.
    Suryanarayanan S; Narasimha R; Hari Dass ND
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013009. PubMed ID: 24580322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors.
    Olcay AB; Pottebaum TS; Krueger PS
    Chaos; 2010 Mar; 20(1):017506. PubMed ID: 20370296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vorticity dynamics and sound generation in two-dimensional fluid flow.
    Nagem RJ; Sandri G; Uminsky D
    J Acoust Soc Am; 2007 Jul; 122(1):128-34. PubMed ID: 17614472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Analysis of Vortical Blood Flow in the Thoracic Aorta Using 4D Phase Contrast MRI.
    von Spiczak J; Crelier G; Giese D; Kozerke S; Maintz D; Bunck AC
    PLoS One; 2015; 10(9):e0139025. PubMed ID: 26418327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Point-vortex model for Lagrangian intermittency in turbulence.
    Rast MP; Pinton JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046314. PubMed ID: 19518340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac flow component analysis.
    Wong KK; Tu J; Kelso RM; Worthley SG; Sanders P; Mazumdar J; Abbott D
    Med Eng Phys; 2010 Mar; 32(2):174-88. PubMed ID: 20022796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional vortex wake structure of flapping wings in hovering flight.
    Cheng B; Roll J; Liu Y; Troolin DR; Deng X
    J R Soc Interface; 2014 Feb; 11(91):20130984. PubMed ID: 24335561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.