BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35709277)

  • 1. Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon.
    Hilal T; Killam BY; Grozdanović M; Dobosz-Bartoszek M; Loerke J; Bürger J; Mielke T; Copeland PR; Simonović M; Spahn CMT
    Science; 2022 Jun; 376(6599):1338-1343. PubMed ID: 35709277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.
    Bubenik JL; Miniard AC; Driscoll DM
    RNA Biol; 2014; 11(11):1402-13. PubMed ID: 25692238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The selenocysteine-specific elongation factor contains a novel and multi-functional domain.
    Gonzalez-Flores JN; Gupta N; DeMong LW; Copeland PR
    J Biol Chem; 2012 Nov; 287(46):38936-45. PubMed ID: 22992746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2.
    Copeland PR; Stepanik VA; Driscoll DM
    Mol Cell Biol; 2001 Mar; 21(5):1491-8. PubMed ID: 11238886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
    Chavatte L; Brown BA; Driscoll DM
    Nat Struct Mol Biol; 2005 May; 12(5):408-16. PubMed ID: 15821744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of the interplay between translation termination, selenocysteine codon context, and selenocysteine insertion sequence-binding protein 2.
    Gupta M; Copeland PR
    J Biol Chem; 2007 Dec; 282(51):36797-807. PubMed ID: 17954931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recoding of the selenocysteine UGA codon by cysteine in the presence of a non-canonical tRNA
    Vargas-Rodriguez O; Englert M; Merkuryev A; Mukai T; Söll D
    RNA Biol; 2018; 15(4-5):471-479. PubMed ID: 29879865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning between recoding and termination at a stop codon-selenocysteine insertion sequence.
    Kotini SB; Peske F; Rodnina MV
    Nucleic Acids Res; 2015 Jul; 43(13):6426-38. PubMed ID: 26040702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selenocysteine insertion sequence (SECIS)-binding protein 2 alters conformational dynamics of residues involved in tRNA accommodation in 80 S ribosomes.
    Caban K; Copeland PR
    J Biol Chem; 2012 Mar; 287(13):10664-10673. PubMed ID: 22308032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Versatile Strategy to Reduce UGA-Selenocysteine Recoding Efficiency of the Ribosome Using CRISPR-Cas9-Viral-Like-Particles Targeting Selenocysteine-tRNA
    Vindry C; Guillin O; Mangeot PE; Ohlmann T; Chavatte L
    Cells; 2019 Jun; 8(6):. PubMed ID: 31212706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Directions for Understanding the Codon Redefinition Required for Selenocysteine Incorporation.
    Howard MT; Copeland PR
    Biol Trace Elem Res; 2019 Nov; 192(1):18-25. PubMed ID: 31342342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel insight into the mechanism of mammalian selenoprotein synthesis.
    Kossinova O; Malygin A; Krol A; Karpova G
    RNA; 2013 Aug; 19(8):1147-58. PubMed ID: 23788723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the Selenoprotein S Positive UGA Recoding (SPUR) element and its position-dependent activity.
    Cockman EM; Narayan V; Willard B; Shetty SP; Copeland PR; Driscoll DM
    RNA Biol; 2019 Dec; 16(12):1682-1696. PubMed ID: 31432740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On elongation factor eEFSec, its role and mechanism during selenium incorporation into nascent selenoproteins.
    Simonović M; Puppala AK
    Biochim Biophys Acta Gen Subj; 2018 Nov; 1862(11):2463-2472. PubMed ID: 29555379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative model for the rate-limiting process of UGA alternative assignments to stop and selenocysteine codons.
    Chen YF; Lin HC; Chuang KN; Lin CH; Yen HS; Yeang CH
    PLoS Comput Biol; 2017 Feb; 13(2):e1005367. PubMed ID: 28178267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The differential expression of glutathione peroxidase 1 and 4 depends on the nature of the SECIS element.
    Latrèche L; Duhieu S; Touat-Hamici Z; Jean-Jean O; Chavatte L
    RNA Biol; 2012 May; 9(5):681-90. PubMed ID: 22614831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel protein domain induces high affinity selenocysteine insertion sequence binding and elongation factor recruitment.
    Donovan J; Caban K; Ranaweera R; Gonzalez-Flores JN; Copeland PR
    J Biol Chem; 2008 Dec; 283(50):35129-39. PubMed ID: 18948268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The L7Ae RNA binding motif is a multifunctional domain required for the ribosome-dependent Sec incorporation activity of Sec insertion sequence binding protein 2.
    Caban K; Kinzy SA; Copeland PR
    Mol Cell Biol; 2007 Sep; 27(18):6350-60. PubMed ID: 17636016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary history of selenocysteine incorporation from the perspective of SECIS binding proteins.
    Donovan J; Copeland PR
    BMC Evol Biol; 2009 Sep; 9():229. PubMed ID: 19744324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RNA-binding protein Secisbp2 differentially modulates UGA codon reassignment and RNA decay.
    Fradejas-Villar N; Seeher S; Anderson CB; Doengi M; Carlson BA; Hatfield DL; Schweizer U; Howard MT
    Nucleic Acids Res; 2017 Apr; 45(7):4094-4107. PubMed ID: 27956496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.