These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35709364)

  • 21. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms.
    Bates PJ; Reyes-Reyes EM; Malik MT; Murphy EM; O'Toole MG; Trent JO
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1414-1428. PubMed ID: 28007579
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combination drug delivery via multilamellar vesicles enables targeting of tumor cells and tumor vasculature.
    Liu Y; Kim YJ; Siriwon N; Rohrs JA; Yu Z; Wanga P
    Biotechnol Bioeng; 2018 Jun; 115(6):1403-1415. PubMed ID: 29457630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-Assembled DNA Nanostructures-Based Nanocarriers Enabled Functional Nucleic Acids Delivery.
    Huang J; Ma W; Sun H; Wang H; He X; Cheng H; Huang M; Lei Y; Wang K
    ACS Appl Bio Mater; 2020 May; 3(5):2779-2795. PubMed ID: 35025408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AS1411 derivatives as carriers of G-quadruplex ligands for cervical cancer cells.
    Figueiredo J; Lopes-Nunes J; Carvalho J; Antunes F; Ribeiro M; Campello MPC; Paulo A; Paiva A; Salgado GF; Queiroz JA; Mergny JL; Cruz C
    Int J Pharm; 2019 Sep; 568():118511. PubMed ID: 31301466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting unimolecular G-quadruplex nucleic acids: a new paradigm for the drug discovery?
    Parrotta L; Ortuso F; Moraca F; Rocca R; Costa G; Alcaro S; Artese A
    Expert Opin Drug Discov; 2014 Oct; 9(10):1167-87. PubMed ID: 25109710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-directed delivery of nucleic acids.
    Bøe S; Prasmickaite L; Engesæter B; Hovig E
    Methods Mol Biol; 2011; 764():107-21. PubMed ID: 21748636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid⁻Protein Interaction.
    Sun ZY; Wang XN; Cheng SQ; Su XX; Ou TM
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of targeted delivery systems for nucleic acid drugs.
    Mahato RI; Takakura Y; Hashida M
    J Drug Target; 1997; 4(6):337-57. PubMed ID: 9239575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. G-quadruplex nucleic acids as therapeutic targets.
    Balasubramanian S; Neidle S
    Curr Opin Chem Biol; 2009 Jun; 13(3):345-53. PubMed ID: 19515602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of peptide-targeted liposomes containing nucleic acids.
    Santos AO; da Silva LC; Bimbo LM; de Lima MC; Simões S; Moreira JN
    Biochim Biophys Acta; 2010 Mar; 1798(3):433-41. PubMed ID: 20004174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Framework-Nucleic-Acid-Enabled Biosensor Development.
    Yang F; Li Q; Wang L; Zhang GJ; Fan C
    ACS Sens; 2018 May; 3(5):903-919. PubMed ID: 29722523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges.
    Huang YW; Lee HJ; Tolliver LM; Aronstam RS
    Biomed Res Int; 2015; 2015():834079. PubMed ID: 25883975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in delivery of drug-nucleic acid combinations for cancer treatment.
    Li J; Wang Y; Zhu Y; Oupický D
    J Control Release; 2013 Dec; 172(2):589-600. PubMed ID: 23624358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of G-Quadruplexes in Enterovirus A71 Genome and Their Interaction with G-Quadruplex Ligands.
    Lv L; Zhang L
    Microbiol Spectr; 2022 Jun; 10(3):e0046022. PubMed ID: 35446122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environment-Recognizing DNA-Computation Circuits for the Intracellular Transport of Molecular Payloads for mRNA Imaging.
    Wang H; Peng P; Wang Q; Du Y; Tian Z; Li T
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6099-6107. PubMed ID: 31981393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies of Functional Nucleic Acids Modified Light Addressable Potentiometric Sensors: X-ray Photoelectron Spectroscopy, Biochemical Assay, and Simulation.
    Jia Y; Li F
    Anal Chem; 2018 Apr; 90(8):5153-5161. PubMed ID: 29561137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. To be targeted: is the magic bullet concept a viable option for synthetic nucleic acid therapeutics?
    Ogris M; Wagner E
    Hum Gene Ther; 2011 Jul; 22(7):799-807. PubMed ID: 21563983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy.
    Deshayes S; Morris M; Heitz F; Divita G
    Adv Drug Deliv Rev; 2008 Mar; 60(4-5):537-47. PubMed ID: 18037526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous Monitoring of Cell-surface Receptor and Tumor-targeted Photodynamic Therapy via TdT-initiated Poly-G-Quadruplexes.
    Shi T; Wang M; Li H; Wang M; Luo X; Huang Y; Wang HH; Nie Z; Yao S
    Sci Rep; 2018 Apr; 8(1):5551. PubMed ID: 29615769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Liposomal delivery of nucleic acids in vivo.
    Smyth Templeton N
    DNA Cell Biol; 2002 Dec; 21(12):857-67. PubMed ID: 12573046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.