These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35709391)

  • 1. Combined QM/MM, Machine Learning Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in RNA Cleavage Reactions.
    Giese TJ; Zeng J; Ekesan Ş; York DM
    J Chem Theory Comput; 2022 Jul; 18(7):4304-4317. PubMed ID: 35709391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Range-Corrected Deep Learning Potentials for Fast, Accurate Quantum Mechanical/Molecular Mechanical Simulations of Chemical Reactions in Solution.
    Zeng J; Giese TJ; Ekesan Ş; York DM
    J Chem Theory Comput; 2021 Nov; 17(11):6993-7009. PubMed ID: 34644071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multireference Generalization of the Weighted Thermodynamic Perturbation Method.
    Giese TJ; Zeng J; York DM
    J Phys Chem A; 2022 Nov; 126(45):8519-8533. PubMed ID: 36301936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio path-integral calculations of kinetic and equilibrium isotope effects on base-catalyzed RNA transphosphorylation models.
    Wong KY; Xu Y; York DM
    J Comput Chem; 2014 Jun; 35(17):1302-16. PubMed ID: 24841935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and Nuclear Quantum Effects on Proton Transfer Reactions of Guanine-Thymine (G-T) Mispairs Using Combined Quantum Mechanical/Molecular Mechanical and Machine Learning Potentials.
    Tao Y; Giese TJ; York DM
    Molecules; 2024 Jun; 29(11):. PubMed ID: 38893576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman's path integral.
    Wong KY; Xu Y; Xu L
    Biochim Biophys Acta; 2015 Nov; 1854(11):1782-94. PubMed ID: 25936775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions.
    Pan X; Yang J; Van R; Epifanovsky E; Ho J; Huang J; Pu J; Mei Y; Nam K; Shao Y
    J Chem Theory Comput; 2021 Sep; 17(9):5745-5758. PubMed ID: 34468138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amber free energy tools: Interoperable software for free energy simulations using generalized quantum mechanical/molecular mechanical and machine learning potentials.
    Tao Y; Giese TJ; Ekesan Ş; Zeng J; Aradi B; Hourahine B; Aktulga HM; Götz AW; Merz KM; York DM
    J Chem Phys; 2024 Jun; 160(22):. PubMed ID: 38856060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Robust Indirect Approach for MM → QM Free Energy Calculations That Combines Force-Matched Reference Potential and Bennett's Acceptance Ratio Methods.
    Giese TJ; York DM
    J Chem Theory Comput; 2019 Oct; 15(10):5543-5562. PubMed ID: 31507179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.
    Gao J
    Methods Enzymol; 2016; 577():359-88. PubMed ID: 27498645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction Path-Force Matching in Collective Variables: Determining Ab Initio QM/MM Free Energy Profiles by Fitting Mean Force.
    Kim B; Snyder R; Nagaraju M; Zhou Y; Ojeda-May P; Keeton S; Hege M; Shao Y; Pu J
    J Chem Theory Comput; 2021 Aug; 17(8):4961-4980. PubMed ID: 34283604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QM/MM Minimum Free Energy Path: Methodology and Application to Triosephosphate Isomerase.
    Hu H; Lu Z; Yang W
    J Chem Theory Comput; 2007 Mar; 3(2):390-406. PubMed ID: 19079734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual QM and MM Approach for Computing Equilibrium Isotope Fractionation Factor of Organic Species in Solution.
    Liu M; Youmans KN; Gao J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30326599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doubly Polarized QM/MM with Machine Learning Chaperone Polarizability.
    Kim B; Shao Y; Pu J
    J Chem Theory Comput; 2021 Dec; 17(12):7682-7695. PubMed ID: 34723536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation.
    Giese TJ; York DM
    J Chem Theory Comput; 2016 Jun; 12(6):2611-32. PubMed ID: 27171914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of kinetic isotope effects for enzymatic reactions.
    Gao J
    Sci China Chem; 2012 Dec; 54(12):1841-1850. PubMed ID: 23976893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.
    Rosta E; Klähn M; Warshel A
    J Phys Chem B; 2006 Feb; 110(6):2934-41. PubMed ID: 16471904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.