These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35709515)

  • 1. Exploring Potential Energy Surfaces Using Reinforcement Machine Learning.
    Mills AW; Goings JJ; Beck D; Yang C; Li X
    J Chem Inf Model; 2022 Jul; 62(13):3169-3179. PubMed ID: 35709515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement learning in ophthalmology: potential applications and challenges to implementation.
    Nath S; Korot E; Fu DJ; Zhang G; Mishra K; Lee AY; Keane PA
    Lancet Digit Health; 2022 Sep; 4(9):e692-e697. PubMed ID: 35906132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-level performance in 3D multiplayer games with population-based reinforcement learning.
    Jaderberg M; Czarnecki WM; Dunning I; Marris L; Lever G; Castañeda AG; Beattie C; Rabinowitz NC; Morcos AS; Ruderman A; Sonnerat N; Green T; Deason L; Leibo JZ; Silver D; Hassabis D; Kavukcuoglu K; Graepel T
    Science; 2019 May; 364(6443):859-865. PubMed ID: 31147514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative subgoal oriented multi-agent reinforcement learning through potential field.
    Li S; Jiang H; Liu Y; Zhang J; Xu X; Liu D
    Neural Netw; 2024 Nov; 179():106552. PubMed ID: 39089154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kernel Temporal Difference based Reinforcement Learning for Brain Machine Interfaces
    Shen X; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6721-6724. PubMed ID: 34892650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What matters in reinforcement learning for tractography.
    Théberge A; Desrosiers C; Boré A; Descoteaux M; Jodoin PM
    Med Image Anal; 2024 Apr; 93():103085. PubMed ID: 38219499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed Encoding of Reinforcement in Rat Cortico-Striatal-Limbic Networks.
    Donovan CH; Badenhorst CA; Gruber AJ
    Neuroscience; 2019 Aug; 413():169-182. PubMed ID: 31229632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning offline: memory replay in biological and artificial reinforcement learning.
    Roscow EL; Chua R; Costa RP; Jones MW; Lepora N
    Trends Neurosci; 2021 Oct; 44(10):808-821. PubMed ID: 34481635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized attention-weighted reinforcement learning.
    Bramlage L; Cortese A
    Neural Netw; 2022 Jan; 145():10-21. PubMed ID: 34710787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based reinforcement learning with dimension reduction.
    Tangkaratt V; Morimoto J; Sugiyama M
    Neural Netw; 2016 Dec; 84():1-16. PubMed ID: 27639719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement Learning Methods in Public Health.
    Weltz J; Volfovsky A; Laber EB
    Clin Ther; 2022 Jan; 44(1):139-154. PubMed ID: 35058056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning strategies in cancer chemotherapy treatments: A review.
    Yang CY; Shiranthika C; Wang CY; Chen KW; Sumathipala S
    Comput Methods Programs Biomed; 2023 Feb; 229():107280. PubMed ID: 36529000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prefrontal solution to the bias-variance tradeoff during reinforcement learning.
    Kim D; Jeong J; Lee SW
    Cell Rep; 2021 Dec; 37(13):110185. PubMed ID: 34965420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Neurobiology of Impulsive Decision-Making and Reinforcement Learning in Nonhuman Animals.
    Groman SM
    Curr Top Behav Neurosci; 2020; 47():23-52. PubMed ID: 32157666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Reinforcement Meta-Learning framework of executive function and information demand.
    Silvetti M; Lasaponara S; Daddaoua N; Horan M; Gottlieb J
    Neural Netw; 2023 Jan; 157():103-113. PubMed ID: 36334532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Episodic memory governs choices: An RNN-based reinforcement learning model for decision-making task.
    Zhang X; Liu L; Long G; Jiang J; Liu S
    Neural Netw; 2021 Feb; 134():1-10. PubMed ID: 33276194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic approach to support outbreak management using reinforcement learning and semi-connected SEIQR models.
    Kao Y; Chu PJ; Chou PC; Chen CC
    BMC Public Health; 2024 Mar; 24(1):751. PubMed ID: 38462635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guaranteed satisficing and finite regret: Analysis of a cognitive satisficing value function.
    Tamatsukuri A; Takahashi T
    Biosystems; 2019 Jun; 180():46-53. PubMed ID: 30822443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.