These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35709531)

  • 1. Gas-Phase Peroxyl Radical Recombination Reactions: A Computational Study of Formation and Decomposition of Tetroxides.
    Salo VT; Valiev R; Lehtola S; Kurtén T
    J Phys Chem A; 2022 Jun; 126(25):4046-4056. PubMed ID: 35709531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing Reaction Routes for
    Hasan G; Salo VT; Valiev RR; Kubečka J; Kurtén T
    J Phys Chem A; 2020 Oct; 124(40):8305-8320. PubMed ID: 32902986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intersystem Crossings Drive Atmospheric Gas-Phase Dimer Formation.
    Valiev RR; Hasan G; Salo VT; Kubečka J; Kurten T
    J Phys Chem A; 2019 Aug; 123(30):6596-6604. PubMed ID: 31287685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Investigation of Substituent Effects on the Alcohol + Carbonyl Channel of Peroxy Radical Self- and Cross-Reactions.
    Hasan G; Salo VT; Golin Almeida T; Valiev RR; Kurtén T
    J Phys Chem A; 2023 Feb; 127(7):1686-1696. PubMed ID: 36753050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neglected pathway for the accretion products formation in the atmosphere.
    Shi X; Tang R; Dong Z; Liu H; Xu F; Zhang Q; Zong W; Cheng J
    Sci Total Environ; 2022 Nov; 848():157494. PubMed ID: 35914590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Investigation of the Formation of Peroxide (ROOR) Accretion Products in the OH- and NO
    Hasan G; Valiev RR; Salo VT; Kurtén T
    J Phys Chem A; 2021 Dec; 125(50):10632-10639. PubMed ID: 34881893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multireference and Coupled-Cluster Study of Dimethyltetroxide (MeO
    Salo VT; Chen J; Runeberg N; Kjaergaard HG; Kurtén T
    J Phys Chem A; 2024 Mar; 128(10):1825-1836. PubMed ID: 38417845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accretion Product Formation from Ozonolysis and OH Radical Reaction of α-Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene.
    Berndt T; Mentler B; Scholz W; Fischer L; Herrmann H; Kulmala M; Hansel A
    Environ Sci Technol; 2018 Oct; 52(19):11069-11077. PubMed ID: 30192520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions with NO, NO2, SO2, and Other RO2 Radicals.
    Berndt T; Richters S; Kaethner R; Voigtländer J; Stratmann F; Sipilä M; Kulmala M; Herrmann H
    J Phys Chem A; 2015 Oct; 119(41):10336-48. PubMed ID: 26392132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Investigation of RO
    Iyer S; Reiman H; Møller KH; Rissanen MP; Kjaergaard HG; Kurtén T
    J Phys Chem A; 2018 Dec; 122(49):9542-9552. PubMed ID: 30449100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large Gas-Phase Source of Esters and Other Accretion Products in the Atmosphere.
    Peräkylä O; Berndt T; Franzon L; Hasan G; Meder M; Valiev RR; Daub CD; Varelas JG; Geiger FM; Thomson RJ; Rissanen M; Kurtén T; Ehn M
    J Am Chem Soc; 2023 Apr; 145(14):7780-7790. PubMed ID: 36995167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction between Peroxy and Alkoxy Radicals Can Form Stable Adducts.
    Iyer S; Rissanen MP; Kurtén T
    J Phys Chem Lett; 2019 May; 10(9):2051-2057. PubMed ID: 30958011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bactericidal activity of alkyl peroxyl radicals generated by heme-iron-catalyzed decomposition of organic peroxides.
    Akaike T; Sato K; Ijiri S; Miyamoto Y; Kohno M; Ando M; Maeda H
    Arch Biochem Biophys; 1992 Apr; 294(1):55-63. PubMed ID: 1312811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxyl, alkoxyl, and carbon-centered radical formation from organic hydroperoxides by chloroperoxidase.
    Chamulitrat W; Takahashi N; Mason RP
    J Biol Chem; 1989 May; 264(14):7889-99. PubMed ID: 2542250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen radical chemistry of polyunsaturated fatty acids.
    Gardner HW
    Free Radic Biol Med; 1989; 7(1):65-86. PubMed ID: 2666279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ESR spin trapping investigation of radical formation from the reaction between hematin and tert-Butyl hydroperoxide.
    Van der Zee J; Barr DP; Mason RP
    Free Radic Biol Med; 1996; 20(2):199-206. PubMed ID: 8746440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin trapping of polyunsaturated fatty acid-derived peroxyl radicals: reassignment to alkoxyl radical adducts.
    Dikalov SI; Mason RP
    Free Radic Biol Med; 2001 Jan; 30(2):187-97. PubMed ID: 11163536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azocompounds as generators of defined radical species: Contributions and challenges for free radical research.
    López-Alarcón C; Fuentes-Lemus E; Figueroa JD; Dorta E; Schöneich C; Davies MJ
    Free Radic Biol Med; 2020 Nov; 160():78-91. PubMed ID: 32771519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of singlet (1O2) oxygen phosphorescence during chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide.
    Hall RD; Chamulitrat W; Takahashi N; Chignell CF; Mason RP
    J Biol Chem; 1989 May; 264(14):7900-6. PubMed ID: 2542251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallophthalocyanines photosensitize the breakdown of (hydro)peroxides in solution to yield hydroxyl or alkoxyl and peroxyl free radicals via different interaction pathways.
    Gantchev TG; Sharman WM; van Lier JE
    Photochem Photobiol; 2003 May; 77(5):469-79. PubMed ID: 12812287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.