These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35709707)

  • 1. Deep learning versus iterative reconstruction on image quality and dose reduction in abdominal CT: a live animal study.
    Zhang JZ; Ganesh H; Raslau FD; Nair R; Escott E; Wang C; Wang G; Zhang J
    Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35709707
    [No Abstract]   [Full Text] [Related]  

  • 2. Dose Reduction While Preserving Diagnostic Quality in Head CT: Advancing the Application of Iterative Reconstruction Using a Live Animal Model.
    Raslau FD; Escott EJ; Smiley J; Adams C; Feigal D; Ganesh H; Wang C; Zhang J
    AJNR Am J Neuroradiol; 2019 Nov; 40(11):1864-1870. PubMed ID: 31601574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based denoising algorithm in comparison to iterative reconstruction and filtered back projection: a 12-reader phantom study.
    Kim Y; Oh DY; Chang W; Kang E; Ye JC; Lee K; Kim HY; Kim YH; Park JH; Lee YJ; Lee KH
    Eur Radiol; 2021 Nov; 31(11):8755-8764. PubMed ID: 33885958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning reconstruction improves radiomics feature stability and discriminative power in abdominal CT imaging: a phantom study.
    Michallek F; Genske U; Niehues SM; Hamm B; Jahnke P
    Eur Radiol; 2022 Jul; 32(7):4587-4595. PubMed ID: 35174400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm.
    Shin YJ; Chang W; Ye JC; Kang E; Oh DY; Lee YJ; Park JH; Kim YH
    Korean J Radiol; 2020 Mar; 21(3):356-364. PubMed ID: 32090528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual impression and texture analysis of advanced modeled iterative reconstruction (ADMIRE): improved assessment of image quality in CT for better estimation of dose reduction potential.
    Alikhani B; Raatschen HJ; Wacker F; Werncke T
    J Radiol Prot; 2023 Jul; 43(3):. PubMed ID: 37442119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen.
    Thor D; Titternes R; Poludniowski G
    Med Phys; 2023 May; 50(5):2775-2786. PubMed ID: 36774193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study.
    Zhong J; Xia Y; Chen Y; Li J; Lu W; Shi X; Feng J; Yan F; Yao W; Zhang H
    Eur Radiol; 2023 Feb; 33(2):812-824. PubMed ID: 36197579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative Reconstruction in Dose Reduction of A Head CT Examination and Corresponding Acquisition Parameter Selection.
    Raslau FD; Escott EJ; Elbelasi H; Adams C; Smiley J; Zhang J
    Radiol Technol; 2022; 93(5):462-472. PubMed ID: 35508407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study.
    Greffier J; Si-Mohamed S; Frandon J; Loisy M; de Oliveira F; Beregi JP; Dabli D
    Med Phys; 2022 Aug; 49(8):5052-5063. PubMed ID: 35696272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.
    Bornet PA; Villani N; Gillet R; Germain E; Lombard C; Blum A; Gondim Teixeira PA
    Eur Radiol; 2022 May; 32(5):3161-3172. PubMed ID: 34989850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely?
    Lyu P; Liu N; Harrawood B; Solomon J; Wang H; Chen Y; Rigiroli F; Ding Y; Schwartz FR; Jiang H; Lowry C; Wang L; Samei E; Gao J; Marin D
    Eur Radiol; 2023 Mar; 33(3):1629-1640. PubMed ID: 36323984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance.
    Laurent G; Villani N; Hossu G; Rauch A; Noël A; Blum A; Gondim Teixeira PA
    Eur Radiol; 2019 Aug; 29(8):4016-4025. PubMed ID: 30701327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards safer imaging: A comparative study of deep learning-based denoising and iterative reconstruction in intraindividual low-dose CT scans using an in-vivo large animal model.
    Mück J; Reiter E; Klingert W; Bertolani E; Schenk M; Nikolaou K; Afat S; Brendlin AS
    Eur J Radiol; 2024 Feb; 171():111267. PubMed ID: 38169217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction.
    Park J; Shin J; Min IK; Bae H; Kim YE; Chung YE
    Korean J Radiol; 2022 Apr; 23(4):402-412. PubMed ID: 35289146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study.
    Greffier J; Hamard A; Pereira F; Barrau C; Pasquier H; Beregi JP; Frandon J
    Eur Radiol; 2020 Jul; 30(7):3951-3959. PubMed ID: 32100091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT.
    Singh R; Digumarthy SR; Muse VV; Kambadakone AR; Blake MA; Tabari A; Hoi Y; Akino N; Angel E; Madan R; Kalra MK
    AJR Am J Roentgenol; 2020 Mar; 214(3):566-573. PubMed ID: 31967501
    [No Abstract]   [Full Text] [Related]  

  • 18. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study.
    Greffier J; Durand Q; Frandon J; Si-Mohamed S; Loisy M; de Oliveira F; Beregi JP; Dabli D
    Eur Radiol; 2023 Jan; 33(1):699-710. PubMed ID: 35864348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving radiomics reproducibility using deep learning-based image conversion of CT reconstruction algorithms in hepatocellular carcinoma patients.
    Lee H; Chang W; Kim HY; Sung P; Cho J; Lee YJ; Kim YH
    Eur Radiol; 2024 Mar; 34(3):2036-2047. PubMed ID: 37656175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.