BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 35709752)

  • 1. BayeshERG: a robust, reliable and interpretable deep learning model for predicting hERG channel blockers.
    Kim H; Park M; Lee I; Nam H
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35709752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism.
    Wang T; Sun J; Zhao Q
    Comput Biol Med; 2023 Feb; 153():106464. PubMed ID: 36584603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. hERG-Att: Self-attention-based deep neural network for predicting hERG blockers.
    Kim H; Nam H
    Comput Biol Chem; 2020 May; 87():107286. PubMed ID: 32531518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models.
    Zhang X; Mao J; Wei M; Qi Y; Zhang JZH
    J Chem Inf Model; 2022 Apr; 62(8):1830-1839. PubMed ID: 35404051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of hERG blockers using machine learning and deep learning approaches.
    Chen Y; Yu X; Li W; Tang Y; Liu G
    J Appl Toxicol; 2023 Oct; 43(10):1462-1475. PubMed ID: 37093028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepHIT: a deep learning framework for prediction of hERG-induced cardiotoxicity.
    Ryu JY; Lee MY; Lee JH; Lee BH; Oh KS
    Bioinformatics; 2020 May; 36(10):3049-3055. PubMed ID: 32022860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage.
    Wang S; Li Y; Wang J; Chen L; Zhang L; Yu H; Hou T
    Mol Pharm; 2012 Apr; 9(4):996-1010. PubMed ID: 22380484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing hERG Risk Assessment with Interpretable Classificatory and Regression Models.
    Sanches IH; Braga RC; Alves VM; Andrade CH
    Chem Res Toxicol; 2024 Jun; 37(6):910-922. PubMed ID: 38781421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of the hERG K+ Channel Blockage Using Online Chemical Database and Modeling Environment (OCHEM).
    Li X; Zhang Y; Li H; Zhao Y
    Mol Inform; 2017 Dec; 36(12):. PubMed ID: 28857516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in computational prediction of HERG blockage.
    Wang S; Li Y; Xu L; Li D; Hou T
    Curr Top Med Chem; 2013; 13(11):1317-26. PubMed ID: 23675938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-learning technique, QSAR and molecular dynamics for hERG-drug interactions.
    Das NR; Sharma T; Toropov AA; Toropova AP; Tripathi MK; Achary PGR
    J Biomol Struct Dyn; 2023; 41(23):13766-13791. PubMed ID: 37021352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking of Small Molecule Feature Representations for hERG, Nav1.5, and Cav1.2 Cardiotoxicity Prediction.
    Arab I; Egghe K; Laukens K; Chen K; Barakat K; Bittremieux W
    J Chem Inf Model; 2024 Apr; 64(7):2515-2527. PubMed ID: 37870574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Catch-22 of Predicting hERG Blockade Using Publicly Accessible Bioactivity Data.
    Siramshetty VB; Chen Q; Devarakonda P; Preissner R
    J Chem Inf Model; 2018 Jun; 58(6):1224-1233. PubMed ID: 29772901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of hERG K+ channel blockage using deep neural networks.
    Zhang Y; Zhao J; Wang Y; Fan Y; Zhu L; Yang Y; Chen X; Lu T; Chen Y; Liu H
    Chem Biol Drug Des; 2019 Sep; 94(5):1973-1985. PubMed ID: 31394026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Based Prediction of Drug-Induced Cardiotoxicity.
    Cai C; Guo P; Zhou Y; Zhou J; Wang Q; Zhang F; Fang J; Cheng F
    J Chem Inf Model; 2019 Mar; 59(3):1073-1084. PubMed ID: 30715873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual screening of DrugBank database for hERG blockers using topological Laplacian-assisted AI models.
    Feng H; Wei GW
    Comput Biol Med; 2023 Feb; 153():106491. PubMed ID: 36599209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An accurate and interpretable bayesian classification model for prediction of HERG liability.
    Sun H
    ChemMedChem; 2006 Mar; 1(3):315-22. PubMed ID: 16892366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Study on the hERG Blocker Prediction Using Chemical Fingerprint Analysis.
    Choi KE; Balupuri A; Kang NS
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32512802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A human ether-á-go-go-related (hERG) ion channel atomistic model generated by long supercomputer molecular dynamics simulations and its use in predicting drug cardiotoxicity.
    Anwar-Mohamed A; Barakat KH; Bhat R; Noskov SY; Tyrrell DL; Tuszynski JA; Houghton M
    Toxicol Lett; 2014 Nov; 230(3):382-92. PubMed ID: 25127758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.