These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35709795)

  • 1. DURIAN: an integrative deconvolution and imputation method for robust signaling analysis of single-cell transcriptomics data.
    Karikomi M; Zhou P; Nie Q
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35709795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. exFINDER: identify external communication signals using single-cell transcriptomics data.
    He C; Zhou P; Nie Q
    Nucleic Acids Res; 2023 Jun; 51(10):e58. PubMed ID: 37026478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes.
    Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P
    Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution.
    Nishikawa T; Lee M; Amau M
    Sci Rep; 2024 Feb; 14(1):4156. PubMed ID: 38378978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets.
    Maden SK; Kwon SH; Huuki-Myers LA; Collado-Torres L; Hicks SC; Maynard KR
    Genome Biol; 2023 Dec; 24(1):288. PubMed ID: 38098055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.
    Chen S; Yan X; Zheng R; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis.
    Zhu M; Lai Y
    J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the performance of dropout imputation and clustering methods for single-cell RNA sequencing data.
    Xu J; Cui L; Zhuang J; Meng Y; Bing P; He B; Tian G; Kwok Pui C; Wu T; Wang B; Yang J
    Comput Biol Med; 2022 Jul; 146():105697. PubMed ID: 35697529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics.
    Swain AK; Pandit V; Sharma J; Yadav P
    Commun Biol; 2024 May; 7(1):639. PubMed ID: 38796505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation.
    Lasri A; Shahrezaei V; Sturrock M
    BMC Bioinformatics; 2022 Jun; 23(1):236. PubMed ID: 35715748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data.
    Tiong KL; Luzhbin D; Yeang CH
    BMC Bioinformatics; 2024 Jun; 25(1):209. PubMed ID: 38867193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics.
    Almet AA; Tsai YC; Watanabe M; Nie Q
    Nat Methods; 2024 Oct; 21(10):1806-1817. PubMed ID: 39187683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DAE-TPGM: A deep autoencoder network based on a two-part-gamma model for analyzing single-cell RNA-seq data.
    Zhao S; Zhang L; Liu X
    Comput Biol Med; 2022 Jul; 146():105578. PubMed ID: 35569337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep matrix factorization based approach for single-cell RNA-seq data clustering.
    Liang Z; Zheng R; Chen S; Yan X; Li M
    Methods; 2022 Sep; 205():114-122. PubMed ID: 35777719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution.
    Li B; Zhang W; Guo C; Xu H; Li L; Fang M; Hu Y; Zhang X; Yao X; Tang M; Liu K; Zhao X; Lin J; Cheng L; Chen F; Xue T; Qu K
    Nat Methods; 2022 Jun; 19(6):662-670. PubMed ID: 35577954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing.
    Bayega A; Fahiminiya S; Oikonomopoulos S; Ragoussis J
    Methods Mol Biol; 2018; 1783():209-241. PubMed ID: 29767365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.